Publication:
Análisis de la maduración y desarrollo dental en población infantil con agenesia dentaria de la Comunidad de Madrid.

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2022-09-22
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Objetivo: Analizar el desarrollo dentario en los dientes permanentes por medio de radiografías panorámicas de un grupo de niños con agenesia dental y un grupo control y su afectación en la maduración y en la edad dentaria.Materiales y Método: El presente trabajo es un estudio transversal retrospectivo. Se obtuvo una muestra de 300 radiografías panorámicas de niños de 6 a 14 años que acudieron a la Facultad de Odontología de la Universidad Complutense de Madrid entre 2006 y 2009. Siguiendo los criterios se estudiaron 169 radiografías panorámicas correspondiente a 72 niños y 97 niñas de los cuales 88 presentaban agenesias dentaria y 81 del grupo control. Se utilizó el Método de Demirjian para la estimación de la edad dentaria en los dientes permanentes del tercer cuadrante. Resultados:Se evaluó la diferencia entre la edad cronológica y edad dental en los grupos de agenesia y grupo control obteniéndose una significancia del 0,373 al 95% en la prueba de Mann Whitney, con los niveles de agenesia resultó un 0,344 de significancia en Kruskall-Wallis y en relación con el sexo un 0,099 de significancia en la prueba de ANOVA. El análisis de correlación de Spearman obtuvo valores mayores a 0,77 entre los estadios y bajos a 0,325 en los estadios de Demirjian y la diferencia de edades. Conclusiones: El desarrollo dentario de los dientes permanentes en el grupo de radiografías panorámicas de pacientes con agenesia no presentaron diferencias significativas con el grupo control.
Objective: To analyze dental development in permanent teeth by means of panoramic radiographs of a group of children with dental agenesis and a control group and its affectation in maturation and dental age. Materials and Method: This work is a retrospective cross-sectional study. A sample survey provided data of 300 panoramic radiographs of children aged 6 to 14 years who attended the Faculty of Odontology at the Complutense University of Madrid between 2006 and 2009. Following the criteria, 169 panoramic radiographs corresponding to 72 boys and 97 girls of which 88 presented dental agenesis and 81 from the control group. The Demirjian Method was used to estimate the dental age in the permanent teeth of the third quadrant. Results: The difference between chronological age and dental age in the agenesis groups and the control group was evaluated, obtaining a significance of 0.373 to 95% in the Mann Whitney test, with the levels of agenesis resulting in a significance of 0.344 in Kruskall-Wallis, and in relation to gender a 0.099 significance in the ANOVA test. Spearman's correlation analysis obtained values higher than 0.77 between the stages and lower than 0.325 in the Demirjian stages and the difference in ages. Conclusions: The dental development of the permanent teeth in the group of panoramic radiographs of patients with agenesis did not present significant differences with the control group.
Description
Keywords
Citation
1. Kolenc-Fuse FJ. Agenesias dentarias: en busca de las alteraciones genéticas responsables de la falta de desarrollo. Med. oral patol. oral cir. bucal 2004;(9):385-95. 2. Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Arch Oral Biol. 2009; 54:3-17. 3. Thesleff I. The genetic of tooth development and dental defects. American Journal of Medical Genetics. 2006 (140): 2530– 35. 4. Al-Ani AH., Genetic and environmental factors associated with hypodontia [Thesis,Doctor of Clinical Dentistry], University of Otago, Dunedin, New Zealand, 2016, http://hdl.handle.net/10523/ 6866 5. Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res. 2008;87 (7): 617-23 6. Tunç E, Bayrak S, Koyutürk A. Dental development in children with mild-to-moderate hypodontia. Am J Orthod Dentofacial Orthop. 2011;139 (3):334-8. 7. Dhamo B, Fennis W, Créton M, Vucic S, Cune M, Ploos van Amstel HK, Wolvius EB,van den Boogaard MJ, Ongkosuwito EM. The association between WNT10A variants and dental development in patients with isolated oligodontia. Eur J Hum Genet. 2016;25(1):59-65. 8. Dhamo, B., Vucic, S., Kuijpers, M.A.R. et al. The association between hypodontia and dental development. Clin Oral Invest .2016; 20: 1347–54. 9. Wang J, Sun K, Shen Y, Xu Y, Xie J, Huang R, Zhang Y, Xu C, Zhang X, Wang R et al. DNA methylation is critical for tooth agenesis: Implications for sporadic non�syndromic anodontia and hypodontia. 2016; Sci Rep. 6:19162. 10. Locker D., Jokovic A, Prakash P, Tompson B. Oral healthrelated quality of life of children with oligodontia. Int J Paed Dent. 2010;( 20): 8–14 11. Nunn JH, Carter NE, Gillgrass TJ et al. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J. 2003;(194): 245–251. 12. Badrov J, Lauc T, Nakaš E, Galić I. Dental Age and Tooth Development in Orthodontic Patients with Agenesis of Permanent Teeth. Biomed Res Int. 2017;8683970. 13. Alsoleihat F., Khraisat A. Hypodontia: Prevalence and pattern amongst the living Druze population – A Near Eastern genetic isolate. HOMO, 2014; 65: 201–213 14. Jain A, Saxena A, Jain S, et al. Prevalence of Developmental Dental Anomalies of Number and Size in Indian Population According to Age and Gender. Int J Clin Pediatr Dent 2021;14(4):531–536. 15. Sadaqah, N.R. and Tair, J.A. Management of Patient with Hypodontia: Review of Literature and Case Report. Open Journal of Stomatology. 2015;( 5): 293-308. 16. Al-Ani AH, Antoun JS, Thomson WM, Merriman TR, Farella M. Hypodontia: An update on its etiology, classification, and clinical management. Biomed Res Int. 2017; 2017:9378325. 17. Ruxandra Mărgărit et al. Non-syndromic familial hypodontia: rare case reports and literature review. Rom J Morphol Embryol 2019, 60(4): 1355-1360. 18. Galluccio G. G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol. 2012; 57:918-30. 19. Ye X, Attaie A. Genetic Basis of Nonsyndromic and Syndromic Tooth Agenesis. J Pediatr Genet. 2016; 5:198–208. 20. Arte S. 2001. Phenotypic and genotypic features of familial hypodontia [Dissertation].[Finland]: University of Helsinki 21. Nieminen P, Genetic basis of Tooth agenesis, J Exp Zool Part B: Molecular and Developmental Evolution, 2009; (4):320–342 22. Haselden K., Hobkirk J. A., Goodman J. R., Jones S. P., Hemmings K. W. Root resorption in retained deciduous canine and molar teeth without permanent successors in patients with severe hypodontia. Int J Paediatr Dent. 2001; 11:171–8. 23. Kokich VG, Kokich VO. Congenitally missing mandibular second premolars: clinical options. Am J Orthod Dentofacial Orthop. 2006;(4): 437-444 24. Mattheeusws N, Dermaut L, Martens G. Has hypodontia increased in Caucasians during the 20th century? A meta‐analysis. Eur J Orthod. 2004; 26: 99‐103 25. Wisth P.,Wisth L, K.Thunold, Boe OE. Frequency of hypodontia in relation to tooth size and dental arch width. Acta Odontol Scan,1974; (32): 201–206. 26. Polder BJ, Van't Hof MA, Van der Linden FP, Kuijpers-Jagtman AM. A meta�analysis of the prevalence of dental agenesis of permanent teeth. Community Dent and Oral Epidemiol. 2004; 32:217-26. 27. Riesenfield, A.The Effect of Environmental Factors on Tooth Development: An Experimental Investigation. Acta Anatomica; 1970;(77):188-215. 28. Grahen H. Hypodontia in the permanent dentition: a clinical and genetic investigation. Odontol Revy. 1956;( 7): 1–100 29. Cobourne MT. Familial human hypodontia--is it all in the genes? Br Dent J. 2007;(203):203-208 30. Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 2000;(117):650-6 31. Chhabra N, Goswami M, Chhabra A. Genetic basis of dental agenesis - molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal. 2014;19 :112-9. 32. Alvez -Ferreira M. Alves-Ferreira, T. Pinho, A. Sousa, J. Sequeiros, C. Lemos, and I. Alonso. Identification of genetic risk factors for maxillary lateral incisor agenesis. J Dent Res 2014;(93): 452–458. 33. Küchler EC, Lips A, Tannure PN, Costa MC, Granjeiro JM Vieira AR. Tooth agenesis association with self-reported family history of cancer. J Dent Res 2013; (92):149–155. 34. Schalk Y. Schalk-van der Weide, W. H. Steen, and F. Bosman.Taurodontism and length of teeth in patients with oligodontia. J Oral Rehabil. 1993;(20): 401–412, 35. Svinhufvud E. Svinhufvud, S. Myllarniemi, and R. Norio, Dominant inheritance of tooth malpositions and their association to hypodontia. Clin Gen 1988; (34): 373–381, 36. Kjaer I, Kocsis G, Nodal M, Christensen LR. Aetiological aspects of mandibular tooth agenesis--focusing on the role of nerve, oral mucosa, and supporting tissues. Eur J Orth.1994; 16 (5): 371-5 37.Tunc ES, Koyuturk AE. Dental age assessment using Demirjian's method on no rthern Turkish children. Forensic Sci Int. 2008; (175):23-6 38. Marinelli A., Giuntini V,Franchi L,Tollaro T,Baccetti T.,Defraia E. Dental anomalies in the primary dentition and their repetition in the permanent dentition: a diagnostic performance study.Odontology.2012; (100):22–27 39.Hobkirk, J.A., Goodman, J.R. and Jones, S.P. Presenting Complaints and Findings in a Group of Patients Attending a Hypodontia. Clin. Brit Dent J, 1994;(177): 337-9. 40.Peck S, Peck L, Kataja M. Concomitant occurrence of canine malposition and tooth agenesis: evidence of orofacial genetic fields. Am J Orthod Dentofacial Orthop.2002; (122):657–60. 41. Kurol, J. Infraocclusion of Primary Molars—An Epidemiological, Familial Longitudinal Clinical and Histological Study. Swedish Dental Journal.1984; (21), 1-67. 42. Baccetti T. Tooth rotations associated with tooth ageneis, The Angle Orthodontist,1998;(68): 267–274. 43. Pirinen S, Kentala A, Nieminen P., Varilo T,Thesleff I, Arte S, Recessively inherited lower incisor hypodontia, J Med Gen 2001;( 38): 551–6. 44. Øgaard B. Krogstad O. Craniofacial structure and soft tissue profile in patients with severe hypodontia. Am J Ortho Dentof Orthop, 1995;(108). 472–477- 45. Jurek, A.; Gozdowski, D., Czochrowska, E.M.; Zadurska, M. Effect of Tooth Agenesis on Mandibular Morphology and Position. Int. J. Environ. Res. Public Health 2021; (18): 11876. 46. Worsaae N, Jensen BN,Holm B,Holsko J.Treatment of severe hypodontia–oligodontia an interdisciplinary concept. Int. J. Oral Maxillofac. Surg. 2007; 36: 473–480 47.Uslenghi S, Liversidge HM, Wong FS. A radiographic study of tooth development in hypodontia. Arch Oral Biol. 2006; (51):129-33. 48. Haavikko K. Tooth formation age estimated on a few selected teeth. A simple method for clinical use. Proc Finn Dent Soc. 1974; (70):15-9 49. Daugaard S, Christensen IJ, Kjaer I. Delayed dental maturity in dentitions with agenesis of mandibular second premolars. Orthod Craniofac Res. 2010;(13):191-6. 50. Ruiz-Mealin E, Parekh S, Jones S, Moles D, Gill D. Radiographic study of delayed tooth development in patients with dental agenesis. Am J Orthod Dentofacial Orthop. 2012;(141): 307-314. 51. Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment. Hum Biol. 1973;45(2):211-27. 52. Demirjian, A. and Goldstein, H. New systems for dental maturity based on seen and four teeth. Ann Hum Biol, 1976; (3): 411-421. 53. Lozada PA, Infante C. Estudio de la maduración dental y edad dental en individuos con ausencia congénita de dientes permanentes comparados con individuos sin ausencia congénita dental. Int J Dent Anthropol 2001;(2):24-9 54. Park MK, Shin MK, Kim SO, Lee HS, Lee JH, Jung HS, Song JS. Prevalence of delayed tooth development and its relation to tooth agenesis in Korean children. Arch Oral Biol. 2017;(73):243-247. 55. Lebbe A, Cadenas de Llano-Pérula M, Thevissen P, Verdonck A, Fieuws S, Willems G. Dental development in patients with agenesis. Int J Legal Med. 2017;(131):537-546. 56. Song JS, Shin TJ, Kim YJ, Kim JW, Jang KT, Lee SH, Hyun HK. Prediction of agenesis of the mandibular second premolar using the developmental stages of the mandibular canine, first premolar, and second molar. Arch Oral Biol. 2018; (87):110-114. 57. Song JS, Shin TJ, Kim YJ, Kim JW, Jang KT, Lee SH, Hyun HK. Prediction of agenesis of the maxillary second premolar based on the developmental stages of the maxillary canine, first premolar, and second molar. Arch Oral Biol. 2020;111: 104629. 58. Cárdenas I, Celis C, Hidalgo A. Método Demirjian para estimación de edad dentaria en base a los estadíos de mineralización. Anu. Soc. Radiol. Oral Maxilo Facial de Chile 2010;(13): 17-23. 59. Feijoo G. Cronología de la odontogénesis de los dientes permanentes en niños de la Comunidad de Madrid. Aplicación a la estimación de la edad dentaria. Tesis Doctoral UCM 2010 60. Gelbrich, B., Hirsch, A., Dannhauer, KH. et al. Agenesis of second premolars and delayed dental maturation. J Orofac Orthop 2015; (76): 338–350 61. Cruz-Landeira A, Linares-Argote J, Martínez-Rodríguez M, Rodríguez-Calvo MS, Otero XL, Concheiro L. Dental age estimation in Spanish and Venezuelan children.Comparison of Demirjian and Chaillet's scores. Int J Legal Med. 2010;(124):105-12. 62. Maber M, Liversidge HM, Hector MP. Accuracy of age estimation of radiographic methods using developing teeth. Forensic Sci Int. 2006;(159):68-73