Publication:
L∞ a-priori estimates for subcritical semilinear elliptic equations with a Carathéodory nonlinearity

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present new L∞ a priori estimates for weak solutions of a wide class of subcritical elliptic equations in bounded domains. No hypotheses on the sign of the solutions, neither of the non-linearities are required. This method is based in combining elliptic regularity with Gagliardo-Nirenberg or Caffarelli-Kohn-Nirenberg interpolation inequalities. Let us consider a semilinear boundary value problem −Δu=f(x,u), in Ω, with Dirichlet boundary conditions, where Ω⊂RN, with N>2, is a bounded smooth domain, and f is a subcritical Carathéodory non-linearity. We provide L∞ a priori estimates for weak solutions, in terms of their L2∗-norm, where 2∗=2N/N−2 is the critical Sobolev exponent. By a subcritical non-linearity we mean, for instance, |f(x,s)|≤|x|−μ˜f(s), where μ∈(0,2), and ˜f(s)/|s|2∗μ−1→0 as |s|→∞, here 2∗μ:=2(N−μ)/N−2 is the critical Sobolev-Hardy exponent. Our non-linearities includes non-power non-linearities. In particular we prove that when f(x,s)=|x−μ |s|2∗μ−2s/[log(e+|s|)]β, with μ∈[1,2), then, for any ε>0 there exists a constant Cε>0 such that for any solution u∈H10(Ω), the following holds [log(e+∥u∥∞)]β≤Cε(1+∥u∥2∗)(2∗μ−2)(1+ε).
Description
Keywords
Citation
[1] M.-F. Bidaut-Veron. Local behaviour of the solutions of a class of nonlinear elliptic systems. Adv. Differential Equations, 5(1-3):147–192, 2000. [2] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. [3] H. Brézis and T. Kato. Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9), 58(2):137–151, 1979. [4] L. Caffarelli, R. Kohn, and L. Nirenberg. First order interpolation inequalities with weights. Compositio Math., 53(3):259–275, 1984. [5] P. Caldiroli and A. Malchiodi. Singular elliptic problems with critical growth. Comm. Partial Differential Equations, 27(5-6):847–876, 2002. [6] A. Castro, N. Mavinga, and R. Pardo. Equivalence between uniform L2∗(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal., 53(1):43–56, 2019. [7] A. Castro and R. Pardo. A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut., 28(3):715–731, 2015. [8] A. Castro and R. Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B, 22 3):783–790, 2017. [9] M. Clapp, R. Pardo, A. Pistoia, and A. Saldaña. A solution to a slightly subcritical elliptic problem with non-power nonlinearity. J. Differential Equations, 275:418–446, 2021. [10] L. Damascelli and R. Pardo. A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal. Real World Appl., 41:475–496, 2018. [11] D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum. A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9), 61 1):41–63, 1982. [12] L. Dupaigne and A. C. Ponce. Singularities of positive supersolutions in elliptic PDEs. Selecta Math. (N.S.), 10(3):341–358, 2004. [13] B. Gidas and J. Spruck. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34(4):525–598, 1981. [14] B. Gidas and J. Spruck. A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations, 6(8):883–901, 1981. [15] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983. [16] E. Jannelli and S. Solimini. Critical behaviour of some elliptic equations with singular potentials. Rapporto no. 41/96, Dipartimento Di Mathematica, Universita degli Studi di Bari, 70125 Bari, Italia. [17] D. D. Joseph and T. S. Lundgren. Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal., 49:241–269, 1972/73. [18] J. Leray and J. Schauder. Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. (3), 51:45–78, 1934. [19] N. Mavinga and R. Pardo. A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl., 449(2):1172–1188, 2017. [20] N. Mavinga and R. Pardo. Equivalence between uniform Lp∗ a priori bounds and uniform L∞ a priori bounds for subcritical p-Laplacian equations. Mediterr. J. Math., 18(1):Paper No. 13, 24, 2021. [21] J. Moser. A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., 13:457–468, 1960. [22] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:115–162, 1959. [23] R. Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, I. Rev. Integr. Temas Mat., 37(1):77–111, 2019. [24] R. Pardo. On the existence of a priori bounds for positive solutions of elliptic problems, II. Rev. Integr. Temas Mat., 37(1):113–148, 2019. [25] R. Pardo and A. Sanjuán. Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth. Electron. J. Differential Equations, pages Paper No. 114, 17, 2020. [26] M. Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.
Collections