¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

The HD 260655 system: two rocky worlds transiting a bright M dwarf at 10 pc



Downloads per month over past year

Caballero, J. A. and Montes Gutiérrez, David and Sanz Forcada, J. (2022) The HD 260655 system: two rocky worlds transiting a bright M dwarf at 10 pc. Astronomy & Astrophysics, 664 . ISSN 0004-6361

[thumbnail of davidmontes151libre+CC.pdf] PDF
Creative Commons Attribution.


Official URL: http://dx.doi.org/10.1051/0004-6361/202243834


We report the discovery of a multiplanetary system transiting the M0 V dwarf HD 260655 (GJ 239, TOI-4599). The system consists of at least two transiting planets, namely HD 260655 b, with a period of 2.77 d, a radius of R_(b) = 1.240 ± 0.023 R_(ꚛ), a mass of M_(b) = 2.14 ± 0.34 M_(ꚛ), and a bulk density of ρ_(b) = 6.2 ± 1.0 g cm^(−3) , and HD 260655 c, with a period of 5.71 d, a radius of R_(c) = 1.533^(+0.051)_(−0.046) R_(ꚛ), a mass of M_(c) = 3.09 ± 0.48 M_(ꚛ), and a bulk density of ρ_(c) = 4.7^(+0.9)_(−0.8) g cm^(−3) . The planets have been detected in transit by the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed independently with archival and new precise radial velocities obtained with the HIRES and CARMENES instruments since 1998 and 2016, respectively. At a distance of 10 pc, HD 260655 has become the fourth closest known multitransiting planet system after HD 219134, LTT 1445 A, and AU Mic. Due to the apparent brightness of the host star (J = 6.7 mag), both planets are among the most suitable rocky worlds known today for atmospheric studies with the James Webb Space Telescope, both in transmission and emission.

Item Type:Article
Additional Information:

© R. Luque et al. 2022. Artículo firmado por 67 autores. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. CARMENES is an instrument at the Centro Astronómico HispanoAlemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). CARMENES was funded by the Max-Planck-Gesellschaft (MPG), the Consejo Superior de Investigaciones Científicas (CSIC), the Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through projects FICTS-2011-02, ICTS-2017-07-CAHA-4, and CAHA16-CE-3978, and the members of the CARMENES Consortium with additional contributions. Some of the observations in this paper made use of the NN-EXPLORE Exoplanet and Stellar Speckle Imager (NESSI). NESSI was funded by the NASA Exoplanet Exploration Program and the NASA Ames Research Center. NESSI was built at the Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. R.L. acknowledges funding from University of La Laguna through the Margarita Salas Fellowship from the Spanish Ministry of Universities ref. UNI/551/2021-May 26, and under the EU Next Generation funds. We acknowledge financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación and the ERDF “A way of making Europe” through projects PID2019-109522GB-C5[1:4]/AEI/10.13039/501100011033 and the Centre of Excellence “Severo Ochoa” and “María de Maeztu” awards to the Instituto de Astrofísica de Canarias (CEX2019-000920-S), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Centro de Astrobiología (MDM2017-0737); the Generalitat de Catalunya/CERCA programme; the Deutsche Forschungsgemeinschaft (DFG) through the Major Research Instrumentation Programme and Research Unit FOR2544 “Blue Planets around Red Stars” (RE 2694/8-1, KU 3625/2-1), the Excellence Cluster ORIGINS (EXC-2094 – 390783311) and the Priority Programme “Exploring the Diversity of Extrasolar Planets” (JE 701/5-1); the National Aeronautics and Space Administration under grants 80NSSC21K0367 and 80NSSC22K0165 in support of Cycles 3 and 4 of the TESS Guest Investigator program; the National Science Foundation, Tennessee State University, and the State of Tennessee through its Centers of Excellence Program; and the Bulgarian BNSF program “VIHREN-2021” project No. KP-06-DV/5. The results reported herein benefited from collaborations and/or information exchange within the program “Alien Earths” (supported by the National Aeronautics and Space Administration under agreement No. 80NSSC21K0593) for NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. We thank Vera M. Passegger for a helpful discussion on the photospheric parameters of HD 260655.

Uncontrolled Keywords:High-resolution spectroscopy; Mass-radius relationships; Carmenes input catalog; Terrestrial planet; Rotation periods; Error-correction; Adaptive optics; Sized planet; Stellar; Exoplanets
Subjects:Sciences > Physics > Astrophysics
ID Code:75756
Deposited On:25 Nov 2022 11:37
Last Modified:25 Nov 2022 12:41

Origin of downloads

Repository Staff Only: item control page