Publication:
Mathematical open problems in projected entangled pair states

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2019-07-29
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Projected entangled pair states (PEPS) are used in practice as an efficient parametrization of the set of ground states of quantum many body systems. The aim of this paper is to present, for a broad mathematical audience, some mathematical questions about PEPS.
Description
Keywords
Citation
1. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988) 2. Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectability lemma and quantum gap amplification. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 417–426 (2009) 3. Alfonsin, J.L.R.: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and Its Applications, vol. 30. Oxford University Press, Oxford (2005) 4. Anshu, A., Arad, I., Vidick, T.: A simple proof of the detectability lemma and spectral gap amplification. Phys. Rev. B 93, 205142 (2016) 5. Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems. arXiv:1301.1162 6. Cirac, J.I., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix product states and projected entangled pair states: concepts, symmetries and theorems (in preparation) 7. Cirac, J.I., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix product denity operators: renormalization fixed points and boundary theories. Ann. Phys. 378, 100–149 (2017) 8. Cirac, J.I., Perez-Garcia, D., Schuch, N., Verstraete, F.: Matrix Product Unitaries: Structure, Symmetries, and Topological Invariants. J. Stat. Mech. 2017, 083105 (2017) 9. Cirac, J.I., Poilblanc, D., Schuch, N., Verstraete, F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83(24), 245134 (2011) 10. Coser, A., Perez-Garcia, D.: Classification of phases for mixed states via fast dissipative evolution. arXiv:1810.05092 11. Dirac, P.A.M.: A new notation for quantum mechanics. Math. Proc. Cambr. Philos. Soc. 35(3), 416–418 (1939) 12. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy—a review. Rev. Mod. Phys. 82, 277 (2010) 13. Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144(3), 443–490 (1992) 14. Ge, Y., Eisert, J.: Area laws and efficient descriptions of quantum many-body states. New J. Phys. 18, 083026 (2016) 15. Gharibian, S., Landau, Z., Woo Shin, S., Wang, G.: Tensor network non-zero testing. Quantum Inf. Comput. 15, 885 (2015) 16. Gong, Z., Snderhauf, C., Schuch, N., Cirac, J.I.: Classification of matrix-product unitaries with symmetries. arXiv:1812.09183 17. Haah, J., Fidkowski, L., Hastings, M.B.: Nontrivial quantum cellular automata in higher dimensions. arXiv:1812.01625 18. Hamza, E., Michalakis, S., Nachtergaele, B., Sims, R.: Approximating the ground state of gapped quantum spin systems. J. Math. Phys. 50, 095213 (2009) 19. Hastings, M.B.: Solving gapped Hamiltonians locally. Phys. Rev. B 73, 085115 (2006) 20. Hastings, M.B.: An area law for one dimensional quantum systems. JSTAT 2007, P08024 (2007) 21. Hayden, P., Leung, D.W., Winter, A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006) 22. Huang, T.: Computing energy density in one dimension. arXiv preprint arXiv:1505.00772 23. Kastoryano, M.J., Lucia, A., Perez-Garcia, D.: Locality at the boundary implies gap in the bulk for 2D PEPS. arXiv:1709.07691 24. Leung, D., Mancinska, L., Matthews, W., Ozols, M., Roy, A.: Entanglement can increase asymptotic rates of zero-error classical communication over classical channels. Commun. Math. Phys. 311, 97–111 (2012) 25. Li, H., Haldane, F.D.M.: Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett. 101(1), 010504 (2008) 26. Masanes, L.: An area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009) 27. Michalek, M., Shitov, Y.: Quantum version of Wielandt’s Inequality revisited. arXiv:1809.04387 28. Michalek, M., Seynnaeve, T., Verstraete, F.: A tensor version of the quantum Wielandt theorem. arXiv:1811.05502 29. Molnar, A., Garre-Rubio, J., Perez-Garcia, D., Schuch, N., Cirac, J.I.: Normal projected entangled pair states generating the same state. New J. Phys. 20, 113017 (2018) 30. Molnar, A., Ge, Y., Schuch, N., Cirac, J.I.: A generalization of the injectivity condition for projected entangled pair states. J. Math. Phys. 59, 021902 (2018) 31. Molnar, A., Schuch, N., Verstraete, F., Cirac, J.I.: Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states. Phys. Rev. B 91, 045138 (2005) 32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2000) 33. Orus, R.: Tensor networks for complex quantum systems. arXiv:1812.04011 34. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representations. Quantum Inf. Comput. 7, 401 (2007) 35. Perez-Garcia, D., Sanz,M., Gonzalez-Guillen, C.E., Wolf, M.M., Cirac, J.I.: Characterizing symmetries in a projected entangled pair state. New J. Phys. 12(2), 025010 (2010) 36. Rahaman, M.: A new bound on quantum Wielandt inequality. arXiv:1807.06872 37. Ran, S.-J., Tirrito, E., Peng, C., Chen, X., Su, G., Lewenstein, M.: Review of tensor network contraction approaches. arXiv:1708.09213 38. Sahinoglu, M.B., Shukla, S.K., Bi, F., Chen, X.: Matrix product representation of locality preserving unitaries. Phys. Rev. B 98, 245122 (2018) 39. Sanz, M., Perez-Garcia, D., Wolf, M.M., Cirac, J.I.: A quantum version of Wielandt’s inequality. IEEE Trans. Inf. Theory 56, 4668–4673 (2010) 40. Scarpa, G., Molnar, A., Ge, Y., Garcia-Ripoll, J.J., Schuch, N., Perez-Garcia, D., Iblisdir, S.: Computational complexity of PEPS zero testing. arXiv:1802.08214 41. Schollwock, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005) 42. Schollwock, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 (2011) 43. Schuch, N., Wolf, M.M., Verstraete, F., Cirac, J.I.: Computational complexity of projected entangled pair states. Phys. Rev. Lett. 98, 140506 (2007) 44. Schuch, N., Perez-Garcia, D., Cirac, J.I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011) 45. Schumacher, B., Werner, R.: Reversible quantum cellular automata. arXiv:quant-ph/0405174 46. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer, Berlin (2006) 47. Stoudenmire, E., Schwab, D.J.: Supervised learning with tensor networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 4799–4807. Curran Associates, Inc. (2016) 48. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27. Springer, Berlin (2000) 49. Verstraete, F., Wolf, M.M., Perez-Garcia, D., Cirac, J.I.: Criticality, the area law, and the computational power of PEPS. Phys. Rev. Lett. 96, 220601 (2006) 50. Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum-many body systems in two and higher dimensions. arXiv:cond-mat/0407066 [cond-mat. str-el] 51. Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 2 (2008) 52. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003) 53. White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 28632866 (1992) 54. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1992) 55. Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z. 52(1), 642–648 (1950)
Collections