Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m



Downloads per month over past year

Fraile Prieto, Luis Mario and Vedia Fernández, María Victoria and otros, ... (2022) Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m. Physical review C, 106 (1). ISSN 2469-9985

[thumbnail of FrailePrieto94libre.pdf]

Official URL:


The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to distinguish between decaying states with very different spin-parity values.

Item Type:Article
Additional Information:

©2022 American Physical Society. Artículo firmado por 45 autores. This work has been supported by the CNRS challenge NEEDS and the associated NACRE project, the CNRS/IN2P3 PICS TAGS between Subatech and IFIC, and the CNRS/IN2P3 Master projects Jyvaskyla and OPALE. This work has also been supported by the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. AIC-A-2011-0696, No. FPA2014-52823-C2-1-P, No. FPA2015-65035-P, No. FPI/BES-2014-068222, No. FPA2017-83946-C2-1-P, and No. RTI2018-098868-B-I00 and the program Severo Ochoa (SEV-2014-0398); by the Spanish Ministerio de Educación under Grant No. FPU12/01527; by the Spanish Ministerio de Ciencia e Innovación under Grant No. PID2019-104714GB-C21; by the European Commission under CHANDA project funded under FP7-EURATOM-FISSION Grant No. 605203; the FP7/ENSAR Contract No. 262010; the SANDA project funded under H2020-EURATOM-1.1 Grant No. 847552. V.G. acknowledges the support of the Polish National Agency for Academic Exchange (NAWA) under Grant No. PPN/ULM/2019/1/00220 and of the National Science Center, Poland, under Contract No. 2019/35/D/ST2/02081. W.G. acknowledges the support of the U.K. Science and Technology Facilities Council Grant No. ST/P005314/. This work was supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017 (Project No. 213503, Nuclear and Accelerator-Based Physics Research at JYFL). Support from the IAEA Nuclear Data Section is acknowledged. Authors thank Tibor Kibedi for help with the new BrIcc version.

Uncontrolled Keywords:Beta-decay; Nuclear-data; Shape coexistence; Fission; Spectrometer; Spectra; Transition; Simulation; Library; Y-96
Subjects:Sciences > Physics > Nuclear physics
ID Code:76435
Deposited On:02 Feb 2023 09:31
Last Modified:02 Feb 2023 09:31

Origin of downloads

Repository Staff Only: item control page