¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

A complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance

Impacto

Downloads

Downloads per month over past year

Brooke, Ryan and Fan, Linhua and Khayet Souhaimi, Mohamed and Wang, Xu (2022) A complementary approach of response surface methodology and an artificial neural network for the optimization and prediction of low salinity reverse osmosis performance. Heliyon, 8 (9). ISSN 2405-8440

[thumbnail of Khayet139libre+CC.pdf]
Preview
PDF
Creative Commons Attribution.

1MB

Official URL: http://dx.doi.org/10.1016/j.heliyon.2022.e10692




Abstract

The treatment of saline water sources by reverse osmosis (RO) is being utilized increasingly to address water shortages around the world. The application of RO is energy-intensive; therefore, plant and process optimization are crucial. The desalination of low salinity water sources with total dissolved solids (TDS) of <5000 mg/L is less energy intensive than the desalination of highly saline seawater and brackish water. A gap exists in optimization studies on lower salinity water (TDS = 500-5000 mg/L). The novelty of the study is the development of a complementary approach using response surface methodology (RSM) and an artificial neural network (ANN) for performance modelling, optimization, and prediction of RO desalination of low salinity water. Feed water salinity, pressure, and temperature were controlled variables to model the performance of the RO system. A performance index incorporating salt rejection efficiency and permeate flux was used as the response target of the system. The optimal parameter combination within their modelled range for the best performance index occurred near the highest pressure input of 150.57 psi, at the temperature of 38.8 degrees C, and at the lowest feed salt concentration of 577 mg/L. Both the RSM and ANN models demonstrated high validity. The RSM and ANN showed R-2 values of 0.99 each and with a root mean square error of 2.41 and 5.85 respectively. The RSM showed a small benefit in model accuracy over the ANN, but the ANN has the benefit of not requiring the central composite design before experimentation and being a continuously improving prediction method as more data becomes available. Further applications of the optimization and modelling approach can be applied to RO system optimization considering membrane types and additional feedwater characteristics.


Item Type:Article
Additional Information:

Professor Xu Wang was supported by Australian Research Council [ARC DP170101039].

Uncontrolled Keywords:Water; Bwro; Desalination; Rsm; Ann
Subjects:Sciences > Physics > Thermodynamics
ID Code:76567
Deposited On:09 Feb 2023 08:39
Last Modified:09 Feb 2023 08:39

Origin of downloads

Repository Staff Only: item control page