¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

Ultrastrong coupling between electron tunneling and mechanical motion

Impacto

Downloads

Downloads per month over past year

Tabanera Bravo, Jorge and Rodríguez Parrondo, Juan Manuel and otros, ... (2022) Ultrastrong coupling between electron tunneling and mechanical motion. Physical review research, 4 (4). ISSN 2643-1564

[thumbnail of RParrondo37libre+CC.pdf]
Preview
PDF
Creative Commons Attribution.

2MB

Official URL: http://dx.doi.org/10.1103/PhysRevResearch.4.043168




Abstract

The ultrastrong coupling of single-electron tunneling and nanomechanical motion opens exciting opportunities to explore fundamental questions and develop new platforms for quantum technologies. We have measured and modeled this electromechanical coupling in a fully suspended carbon nanotube device and report a ratio of gm/omega m = 2.72 +/- 0.14, where gm/2 pi = 0.80 +/- 0.04 GHz is the coupling strength and omega m/2 pi = 294.5 MHz is the mechanical resonance frequency. This is well within the ultrastrong coupling regime and the highest among all other electromechanical platforms. We show that, although this regime was present in similar fully suspended carbon nanotube devices, it went unnoticed. Even higher ratios could be achieved with improvement on device design.


Item Type:Article
Additional Information:

Artículo firmado por 12 autores. We acknowledge useful discussions with M. Woolleyand F. Pistolesi and thank Serkan Kaya for his helpin the fabrication of the device. This research was supported by Grant No. FQXi-IAF19-01 from the Foundational Questions Institute Fund, a donor advised fund of Silicon Valley Community Foundation. N.A. acknowledges the support from the Royal Society, EPSRC Platform Grant (Grant No. EP/R029229/1), from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 948932), and from Templeton World Charity Foundation. A.A. acknowledges the support of the Foundational Questions Institute Fund (Grant No. FQXi-IAF19-05), the Templeton World Charity Foundation, Inc (Grant No.TWCF0338) and the ANR Research Collaborative Project "Qu-DICE" (Grant No. ANR-PRC-CES47). J.T. and J.M.R.P.acknowledge financial support from the Spanish Government (Grant Contract, FIS-2017-83706-R). J.A. acknowledges support from EPSRC (Grant No. EP/R045577/1) and the Royal Society. J.M. acknowledges funding from the Vetenskapsradet, Swedish VR (Project No. 2018-05061).

Uncontrolled Keywords:Nanotube; Resonator; Blockade
Subjects:Sciences > Physics > Nuclear physics
ID Code:76600
Deposited On:20 Feb 2023 08:22
Last Modified:20 Feb 2023 08:22

Origin of downloads

Repository Staff Only: item control page