¡Nos trasladamos! E-Prints cerrará el 7 de junio.

En las próximas semanas vamos a migrar nuestro repositorio a una nueva plataforma con muchas funcionalidades nuevas. En esta migración las fechas clave del proceso son las siguientes:

Es muy importante que cualquier depósito se realice en E-Prints Complutense antes del 7 de junio. En caso de urgencia para realizar un depósito, se puede comunicar a docta@ucm.es.

In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression

Impacto

Downloads

Downloads per month over past year

Montero Calle, Ana and López Janeiro, Álvaro and Mendes, Marta L. and Pérez Hernández, Daniel and Echevarría, Irene and Ruz Caracuel, Ignacio and Heredia soto, Victoria and Mendiola, Marta and Hardisson, David and Argüeso, Pablo and Peláez García, Alberto, Alberto and Guzmán Aránguez, Ana Isabel and Barderas Manchado, Rodrigo (2023) In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cellular oncology . 19 p.. ISSN 2211-3428; 2211-3436 (E-ISSN)

[thumbnail of s13402-023-00778-w.pdf]
Preview
PDF
Creative Commons Attribution.

9MB

Official URL: https://doi.org/10.1007/s13402-023-00778-w




Abstract

Background: Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression.
Methods: Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins.
Results: Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC.
Conclusion: C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.


Item Type:Article
Additional Information:

Acuerdo Transformativo CRUE-CSIC
Accepted: 19 January 2023; Published: 06 February 2023

Uncontrolled Keywords:Endometrial cancer; O-glycosylation; C1GALT1; Quantitative proteomics; SILAC
Subjects:Medical sciences > Medicine > Biochemistry
Medical sciences > Medicine > Oncology
ID Code:76697
Deposited On:17 Feb 2023 19:58
Last Modified:17 Feb 2023 19:58

Origin of downloads

Repository Staff Only: item control page