Publication:
Strain pattern and kinematics of the Canarian Islands from GNNSS time series analysis

Research Projects
Organizational Units
Journal Issue
Abstract
Following the 2004 seismic unrest at Tenerife and the 2011–2012 submarine eruption at El Hierro, the number of Global Navigation Satellite System (GNSS) observation sites in the Canary Islands (Spain) has increased, offering scientists a useful tool with which to infer the kinematics and present-day surface deformation of the Canary sector of the Atlantic Ocean. We take advantage of the common-mode component filtering technique to improve the signal-to-noise ratio of the velocities retrieved from the daily solutions of 18 permanent GNSS stations distributed in the Canaries. The analysis of GNSS time series spanning the period 2011–2017 enabled us to characterize major regions of deformation along the archipelago through the mapping of the 2D infinitesimal strain field. By applying the triangular segmentation approach to GNSS velocities, we unveil a variable kinematic behaviour within the islands. The retrieved extension pattern shows areas of maximum deformation west of Tenerife, Gran Canaria and Fuerteventura. For the submarine main seismogenic fault between Tenerife and Gran Canaria, we simulated the horizontal deformation and strain due to one of the strongest (mbLg 5.2) earthquakes of the region. The seismic areas between islands, mainly offshore Tenerife and Gran Canaria, seem mainly influenced by the regional tectonic stress, not the local volcanic activity. In addition, the analysis of the maximum shear strain confirms that the regional stress field influences the E–W and NE–SW tectonic lineaments, which, in accordance with the extensional and compressional tectonic regimes identified, might favour episodes of volcanism in the Canary Islands.
Description
Keywords
Citation
1. Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J. Geophys. Res.Solid Earth 2015, 120, 3909–3931. 2. Savage, J.C. Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan. J. Geophys. Res. Solid Earth 2018, 123, 1954–1968. 3. Tzanis, A.; Chailas, S.; Sakkas, V.; Lagios, E. Tectonic deformation in the Santorini volcanic complex (Greece) as inferred by joint analysis of gravity, magnetotelluric and DGPS observations. Geophys. J. Int. 2019, 220, 461–489. 4. Haines, A.J.; Wallace, L.M. New Zealand-Wide Geodetic Strain Rates Using a Physics-Based Approach. Geophys. Res. Lett. 2020, 47, e2019GL084606. 5. Bastos, L.; Bos, M.S.; Fernandes, R.M. Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics—Overview and Recent Developments. In Sciences of Geodesy-I; Xu, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 155–184. [CrossRef] 6. Blewitt, G.; Hammond,W.C.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 99. 7. Larson, K.M. Unanticipated Uses of the Global Positioning System. Annu. Rev. Earth Planet. Sci. 2019, 47, 19–40. 8. Wdowinski, S.; Bock, Y.; Zhang, J.; Fang, P.; Genrich, J. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res. Space Phys. 1997, 102, 18057–18070. 9. Martin, A.; Sevilla, M.; Zurutuza, J. Crustal deformation study in the Canary Archipelago by the analysis of GPS observations. J. Appl. Geodesy 2014, 8, 129–140. 10. López, C.; García-Cañada, L.; Martí, J.; Cerdeña, I.D. Early signs of geodynamic activity before the 2011–2012 El Hierro eruption. J. Geodyn. 2017, 104, 1–14. 11. Fernández, J.; Yu, T.-T.; Rodríguez-Velasco, G.; González-Matesanz, J.; Romero, R.; Rodríguez, G.; Quiros, R.; Dalda, A.; Aparicio, A.; Blanco, M. New geodetic monitoring system in the volcanic island of Tenerife, Canaries, Spain. Combination of InSAR and GPS techniques. J. Volcanol. Geotherm. Res. 2003, 124, 241–253. 12. Berrocoso, M.; Carmona, J.; Fernandez-Ros, A.; Perez-Pena, A.; Ortiz, R.; García, A. Kinematic model for Tenerife Island (Canary Islands, Spain): Geodynamic interpretation in the Nubian plate context. J. Afr. Earth Sci. 2010, 58, 721–733. 13. García, A.; Fernández-Ros, A.; Berrocoso, M.; Marrero, J.M.; Prates, G.; De La Cruz-Reyna, S.; Ortiz, R. Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Islands, 2011–2013. Geophys. J. Int. 2014, 197, 322–334. 14. Riccardi, U.; Arnoso, J.; Benavent, M.; Velez, E.; Tammaro, U.; Montesinos, F.G. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations. J. Volcanol. Geotherm. Res. 2018, 357, 14–24. 15. Barbero, I.; Torrecillas, C.; Prates, G.; Páez, R.; Garate, J.; García, A.; Berrocoso, M. Assessment of ground deformation following Tenerife’s 2004 volcanic unrest (Canary Islands). J. Geodyn. 2018, 121, 1–8. 16. Alzola, A.S.; Martí, J.; García-Yeguas, A.; Gil, A.J. Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008–2015). J. Volcanol. Geotherm. Res. 2016, 327, 240–248. [CrossRef] 17. Ancochea, E.; Brändle, J.; Cubas, C.; Hernan, F.; Huertas, M. Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura. J. Volcanol. Geotherm. Res. 1996, 70, 183–204. 18. Carracedo, J.C.; Pérez Torrado, F.J.; Ancochea, E.; Meco, J.; Hernán, F.; Cubas, C.R.; Casillas, R.; Rodríguez Badiola, E.; Ahijado, A. Cenozoic volcanism II: The Canary Islands. In The Geology of Spain; Gibbons, W., Moreno, T., Eds.; Geological Society London: London, UK, 2002; p. 632. 19. Watts, A.B.; Peirce, C.; Collier, J.S.; Dalwood, R.; Canales, J.P.; Henstock, T.J. A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth Planet. Sci. Lett. 1997, 146, 431–447. 20. Schmincke, H.U. Volcanism; Springer: Berlin/Heidelberg, Germany, 2004; p. 324. 21. Llanes, P. Estructura de la Litosfera en el Entorno de las Islas Canarias a Partir del Análisis Gravimétrico e Isostático: Implicaciones Geodinámicas. Ph.D. Thesis, Univ. Complutense of Madrid, Madrid, Spain, 2006; p. 195. 22. Troll, V.R.; Carracedo, J.C. The Geology of the Canary Islands; Elsevier BV: Amsterdam, The Netherlands, 2016; p. 636. 23. Carracedo, J.C. Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J. Volcanol. Geotherm. Res. 1999, 94, 1–19. 24. Mantovani, E.; Viti, M.; Babbucci, D.; Albarello, D. Nubia-Eurasia kinematics: An alternative interpretation from Mediterranean and North Atlantic evidence. Ann Geophys. 2007, 50, 341–366. 25. Ruiz, C.; García-Cacho, L.; Arana, V.; Luque, A.; Felpeto, A. Submarine volcanism surrounding Tenerife, Canary Islands: Implications for tectonic controls, and oceanic shield forming processes. J. Volcanol. Geotherm. Res. 2000, 103, 105–119. [CrossRef] 26. Anguita, F.; Hernan, F. The Canary Islands origin: A unifying model. J. Volcanol. Geotherm. Res. 2000, 103,1–26. 27. Anguita, F.; Hernan, F. A propagating fracture model versus a hot spot origin for the Canary islands. Earth Planet. Sci. Lett. 1975, 27, 11–19. 28. Bosshard, E.; Macfarlane, D.J. Crustal structure of the western Canary Islands from seismic refraction and gravity data. J. Geophys. Res. Space Phys. 1970, 75, 4901–4918. 29. Zhao, D.; Lei, J.; Inoue, T.; Yamada, A.; Gao, S.S. Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett. 2006, 243, 681–691. 30. Fourel, L.; Milelli, L.; Jaupart, C.; Limare, A. Generation of continental rifts, basins, and swells by lithosphere instabilities. J. Geophys. Res. Solid Earth 2013, 118, 3080–3100. 31. Duggen, S.; Hoernle, K.; Hauff, F.; Kluegel, A.; Bouabdellah, M.; Thirlwall, M.F. Flow of Canary mantle Plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean: REPLY. Geology 2010, 38, e203. 32. Geyer, A.; Marti, J.; Villaseñor, A. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment. Tectonophysics 2016, 679, 125–139. 33. Mezcua, J.; Buforn, E.; Udias, A.; Rueda, J. Seismotectonics of the Canary Islands. Tectonophysics 1992, 208,447–452. 34. Del Fresno, C.; Cerdeña, I.D.; Cesca, S.; Buforn, E. The 8 October 2011 Earthquake at El Hierro (Mw 4.0): Focal Mechanisms of the Mainshock and Its Foreshocks. Bull. Seism. Soc. Am. 2014, 105, 330–340. 35. Telesca, L.; Lovallo, M.; López, C.; Molist, J.M. Multiparametric statistical investigation of seismicity occurred at El Hierro (Canary Islands) from 2011 to 2014. Tectonophysics 2016, 672, 121–128. 36. Jiménez-Munt, I.; Fernández, M.; Torne, M.; Bird, P.; Torne, M. The transition from linear to di�use plate boundary in the Azores–Gibraltar region: Results from a thin-sheet model. Earth Planet. Sci. Lett. 2001, 192, 175–189. 37. Jiménez-Munt, I.; Negredo, A.M. Neotectonic modelling of the western part of the Africa–Eurasia plate boundary: From the Mid-Atlantic ridge to Algeria. Earth Planet. Sci. Lett. 2003, 205, 257–271. 38. Blanco-Montenegro, I.; Nicolosi, I.; Pignatelli, A.; García, A.; Chiappini, M. New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: The case of Tenerife, Canary Islands. J. Geophys. Res. Space Phys. 2011, 116. 39. Blanco-Montenegro, I.; Montesinos, F.G.; Arnoso, J. Aeromagnetic anomalies reveal the link between magmatism and tectonics during the early formation of the Canary Islands. Sci. Rep. 2018, 8, 42. 40. Blanco-Montenegro, I.; Montesinos, F.G.; Nicolosi, I.; Arnoso, J.; Chiappini, M. Three-Dimensional Magnetic Models of La Gomera (Canary Islands): Insights Into the Early Evolution of an Ocean Island Volcano. Geochem. Geophys. Geosystems 2020, 21, 2019gc008787. 41. Kreemer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. 42. Moritz, H. Advanced Least-Square Methods. Reports of the Department of Geodetic Science; Report 175; Ohio State University: Columbus, OH, USA, 1972; p. 129. 43. Allmendinger, R.W.; Cardozo, N.; Fisher, D.M. Structural Geology Algorithms; Cambridge University Press (CUP): Cambridge, UK, 2011. 44. Shen, Z.-K.; Jackson, D.D.; Ge, B.X. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res. Space Phys. 1996, 101, 27957–27980. 45. Wu, Y.; Jiang, Z.-S.; Yang, G.; Wei,W.; Liu, X. Comparison of GPS strain rate computing methods and their reliability. Geophys. J. Int. 2011, 185, 703–717. 46. Szafarczyk, A.; Ulmaniec, M.; Borowiec, W. An attempt to apply tensor calculus to evaluate the deformation condition of vertical upper embankment zones for a landfill located in a mining area, based on satellite measurement results. Rep. Geod. 2007, 82, 317–326. 47. Tammaro, U.; DeMartino, P.; Obrizzo, F.; Brandi, G.; D’Alessandro, A.; Dolce, M.; Malaspina, S.; Serio, C.; Pingue, F. Somma Vesuvius volcano: Ground deformations from CGPS observations (2001–2012). Ann. Geophys. 2013, 56, S0456. 48. Araszkiewicz, A. Reference Frame Realization Impact on Network Deformation—Geodynamic Research in Tectonic Stable Areas. In Proceedings of the 14th SGEM GeoConference on Informatics, Geoinformatics and Remote Sensing, Albena, Bulgaria, 17–26 June 2014; STEF92 Technology Ltd.: Sofia, Bulgaria, 2014; Volume 2, pp. 427–434. 49. Segall, P. Earthquake and Volcano Deformation; Walter de Gruyter GmbH: Berlin, Germany, 2010; p. 432. 50. Luzum, B.; Petit, G. The IERS Conventions (2010): Reference systems and new models. Proc. Int. Astron. Union 2012, 10, 227–228. 51. Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. 52. Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. 53. Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. Fundamentals of Rock Mechanics, 4th ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; ISBN 13: 978-0-632-05759-7. 54. DeMets, C.; Gordon, R.G.; Vogt, P. Location of the Africa-Australia-India Triple Junction and Motion between the Australian and Indian Plates: Results from an Aeromagnetic Investigation of the Central Indian and Carlsberg Ridges. Geophys. J. Int. 1994, 119, 893–930. 55. González, P.J.; Fernández, J. Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands. J. Geophys. Res. Space Phys. 2011, 116. 56. Ancochea, E.; Fuster, J.; Ibarrola, E.; Cendrero, A.; Coello, J.; Hernan, F.; Cantagrel, J.M.; Jamond, C. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J. Volcanol. Geotherm. Res. 1990, 44, 231–249. 57. Fernández, J.; Tizzani, P.; Manzo, M.; Borgia, A.; González, P.J.; Martí, J.; Pepe, A.; Camacho, A.G.; Casu, F.; Berardino, P.; et al. Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys. Res. Lett. 2009, 36, 04306. 58. De Vallejo, L.I.G.; García-Mayordomo, J.; Insua-Arévalo, J.M. Probabilistic Seismic-Hazard Assessment of the Canary Islands. Bull. Seism. Soc. Am. 2006, 96, 2040–2049. 59. García, A.; Ortiz, R.; Marrero, J.M.; Sánchez, N.; Vila, J.; Correig, A.M.; Marcià, R.; Sleeman, R.; Tárraga, M. Monitoring the reawakening of Canary Islands’ Teide Volcano. Eos 2006, 87, 61. 60. Gottsmann, J.; Wooller, L.; Marti, J.; Fernandez, J.; Camacho, A.G.; González, P.J.; García, A.; Rymer, H. New evidence for the reawakening of Teide volcano. Geophys. Res. Lett. 2006, 33, 20311. 61. Fernández, C.; De La Nuez, J.; Casillas, R.; García-Navarro, E. Stress fields associated with the growth of a large shield volcano (La Palma, Canary Islands). Tectonics 2002, 21, 13-1–13-18. 62. Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. Space Phys. 2005, 110. 63. Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. Space Phys. 2004, 109. 64. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. 65. Hearn, E.H. What can GPS data tell us about the dynamics of post-seismic deformation? Geophys. J. Int. 2003, 155, 753–777. 66. Ablay, G.J.; Palmer, M.R.; Carroll, M.; Marti, J.; Sparks, R.S.J. Basanite-Phonolite Lineages of the Teide-Pico Viejo Volcanic Complex, Tenerife, Canary Islands. J. Pet. 1998, 39, 905–936. 67. Ancochea, E.; Huertas, M.; Cantagrel, J.; Coello, J.; Fúster, J.; Arnaud, N.; Ibarrola, E. Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res. 1999, 88, 177–199. 68. Carracedo, J.C.; Badiola, E.R.; Guillou, H.; Paterne, M.; Scaillet, S.; Perez-Torrado, F.J.; Paris, R.; Fra-Paleo, U.; Hansen, A. Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. GSA Bull. 2007, 119, 1027–1051. 69. Marti, J.; Geyer, A.; Andújar, J.; Teixidó, F.; Costa, F. Assessing the potential for future explosive activity from Teide–Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res. 2008, 178, 529–542. 70. Almendros, J.; Ibáñez, J.; Carmona, E.; Zandomeneghi, D. Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano. J. Volcanol. Geotherm. Res. 2007, 160, 285–299. 71. Marti, J.; Ortiz, R.; Gottsmann, J.; García, A.; De La Cruz-Reyna, S. Characterising unrest during the reawakening of the central volcanic complex on Tenerife, Canary Islands, 2004–2005, and implications for assessing hazards and risk mitigation. J. Volcanol. Geotherm. Res. 2009, 182, 23–33. 72. Cerdeña, I.D.; Del Fresno, C.; Cantavella, J.V.; Felpeto, A.; Lozano, L.; Medina, L.C.; Torres, P.A.; Luengo-Oroz, N.; Solares, J.M.M.; Blanco, M.; et al. Comment on “Geochemical evidences of seismo-volcanic unrests at the NW rift-zone of Tenerife, Canary Islands, inferred from di�use CO2 emission” by Hernández P. A., Padilla G., Barrancos J., Melián G., Padrón E., Asensio-Ramos M., Rodríguez F., Pérez N. M., Alonso M., and Calvo D. [Bull Volcanol (2017) 79:30]. Bull. Volcanol. 2017, 80, 1–4. 73. Gottsmann, J.; Camacho, A.G.; Marti, J.;Wooller, L.; Fernandez, J.; García, A.; Rymer, H. Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: Implications for its evolution and recent reactivation. Phys. Earth Planet. Inter. 2008, 168, 212–230. 74. Aparicio, S.S.-M.; Martí, J.; Montesinos, F.; Gómez, A.B.; De Pablo, J.P.; Fernández, P.V.; García-Maroto, M.C. Gravimetric study of the shallow basaltic plumbing system of Tenerife, Canary Islands. Phys. Earth Planet. Inter. 2019, 297, 106319. 75. Garcia-Yeguas, A.; Koulakov, I.; Ibáñez, J.; Rietbrock, A. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data. J. Geophys. Res. Space Phys. 2012, 117, 09309.
Collections