Publication:
On the power of quantum entanglement in multipartite quantum XOR games

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2023-02-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we show that, given k≥3, there exist k-player quantum XOR games for which the entangled bias can be arbitrarily larger than the bias of the game when the players are restricted to separable strategies. In particular, quantum entanglement can be a much more powerful resource than local operations and classical communication to play these games. This result shows a strong contrast to the bipartite case, where it was recently proved that the entangled bias is always upper bounded by a universal constant times the one-way classical communication bias.
Description
Keywords
Citation
[1] J. Barrett, L. Hardy, A. Kent, No Signalling and Quantum Key Distribution, Phys. Rev. Lett. 95, 010503 (2005). [2] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics, 1, 195 (1964). [3] J. Briet, T. Vidick, Explicit lower and upper bounds on the entangled value of multiplayer XOR games, Comm. Math. Phys. 321(1), (2013). [4] A. Chefles. Condition for unambiguous state discrimination using local operations and classical communication, Phys. Rev. A, 69 5):050307, (2004). [5] E. Chitambar, D. Leung, L. Mancinska, M. Ozols, A. Winter, Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask), Commun. Math. Phys., vol. 328 (1), 303-326 (2014). [6] J.F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23: 880-884 (1969). [7] R. Cleve, P. Høyer, B. Toner, J. Watrous, Consequences and limits of nonlocal strategies. In Proc. 19thIEEE Conf. on Computational Complexity (CCC04), pages 236-249. IEEE Computer Society, 2004. [8] R. Colbeck, Quantum And Relativistic Protocols ForSecure Multi-Party Computation. PhD thesis, Trinity College, University of Cambridge (2009). [9] B. Collins, I. Nechita, Random matrix techniques in quantum information theory, J. Math. Phys. 57, no. 1, 015215 (2016) [10] W. H. G. Corrêa, L. Lami, C. Palazuelos, Maximal gap between local and global distinguishability of bipartite quantum states. IEEE Trans. Inform. Theory, 68 (11), 7306-7314 (2022). [11] K. R. Davison, C*-algebras by Examples Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, (1996). [12] A. Defant, K. Floret, Tensor norms and operator ideals, 176, North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1993). [13] D. P. DiVincenzo, D. W. Leung, B. M. Terhal, IEEE Trans. Inf Theory Vol. 48. No. 3, 580-599 (2002). [14] E. G. Effros, Z.-J Ruan,Operator spaces,23 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York (2000). [15] T. Eggeling, R.F. Werner, Hiding classical data in multi-partite quantum systems, Phys. Rev. Lett.89, 097905 (2002). [16] M. P. A. Fisher, V. Khemani, A. Nahum, S. Vijay, Random quantum circuits (2022), arXiv:2207.14280. [17] T. Fritz, Tsirelson’s problem and Kirchberg’s conjecture Rev. Math. Phys. 24(5), 1250012 (2012). [18] P. Hayden, D. W. Leung, A. Winter, Aspects of generic entanglement, Comm. Math. Phys. 265, No. 1, 95-117 (2006). [19] M. Horodecki, P. Horodecki, R. Horodecki. Mixed-stateentanglement and distillation: is there a “bound” entanglement in nature?, Phys. Rev. Lett., 80(24), 5239-5242 (1998). [20] T. Ito, T. Vidick. A multi-prover interactive proof for NEXP sound against en-tangled provers. In IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 243-252 (2012). [21] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen. MIP* = RE. arXiv:2001.04383, 2020. [22] M. Junge, A. M. Kubicki, C. Palazuelos, I. Villanueva, On the relation between completely bounded and (1; cb)-summing maps with applications to quantum XOR games. J. Funct. Anal., 283, 109708 (2022). [23] M. Junge, M. Navascues, C. Palazuelos, D. Perez-García, V. B. Scholz, and R. F. Werner. Connes embedding problem and Tsirelson’s problem. J. Math. Phys., 52(1):012102, 12 (2011). [24] L. Lami, C. Palazuelos, A. Winter. Ultimate Data Hiding in Quantum Mechanics and Beyond, Commun. Math. Phys., 361, 661-708 (2018). [25] W. Matthews, S. Wehner, A. Winter, Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding, Commun. Math. Phys. 291(3), 813-843 (2009). [26] A. Natarajan, J. Wright, NEEXP ⊆ MIP*. arXiv preprint arXiv:1904.05870v3,2019. [27] C. Palazuelos, Random constructions in Bell inequalities: A survey, Found. Phys., 48, 857-885 (2018). [28] C. Palazuelos, T. Vidick, Survey on Nonlocal Games and Operator Space Theory. J. Math. Phys. 57, 015220 (2016). [29] V. I. Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. [30] D. Pérez-García, M.M. Wolf, C. Palazuelos, I. Villanueva, M. Junge. Unbounded violation of tripartite Bell inequalities. Comm. Math. Phys. 279 (2) 455-486 (2008). [31] S. Pironio, A. Acin, S. Massar, A. B.De La Giroday, D. N. Matsukevich, P. Maunz,S. Olmschenk, D. Hayes, L. Luo, T. A. Manning,and et al. Random numbers certified by Bell’s theorem, Nature, 464(7291):10 (2009). [32] G. Pisier, Introduction to operator space theory, 294 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2003). [33] G. Pisier, Tripartite Bell inequality, random matrices and trilinear forms. Available in arXiv:1203.2509. [34] E. M. Rains. A semidefinite program for distillable entanglement, IEEETrans. Inf. Theory, 47(7):2921-2933, (2001). [35] O. Regev, T. Vidick, Quantum XOR games. ACM Transactions on Computation Theory (TOCT), 7 (4), (2015). [36] Z.-J. Ruan, Subspaces of C*-algebras, Funct. Anal., 76(1):217-230 (1988). [37] N. Tomczak-Jaegermann, Banach-Mazur Distances and finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific and Technical, (1989). [38] U. Vazirani, T. Vidick, Fully device independent quantum key distribution, Phys. Rev. Lett. 113, 140501 (2014). [39] R. Vershynin, High-Dimensional Probability. An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics, Series Number 47 (2018). [40] B. S. Tsirelson, Some results and problems on quantum Bell-type inequalities, Hadronic J. Supp. 8(4), 329-345 (1993).
Collections