Publication:
Immunization with a Multivalent Listeria monocytogenes Vaccine Leads to a Strong Reduction in Vertical Transmission and Cerebral Parasite Burden in Pregnant and Non-Pregnant Mice Infected with Neospora caninum

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2023-01-11
Authors
Imhof, Dennis
Pownall, William
Hänggeli, Kai Pascal Alexander
Monney, Camille
Forterre, Franck
Oevermann, Anna
Hemphill, Andrew
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MPDI
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion and stillbirth in cattle. We employed the pregnant neosporosis mouse model to investigate the efficacy of a modified version of the attenuated Listeria monocytogenes vaccine vector Lm3Dx_NcSAG1, which expresses the major N. caninum surface antigen SAG1. Multivalent vaccines were generated by the insertion of gra7 and/or rop2 genes into Lm3Dx_NcSAG1, resulting in the double mutants, Lm3Dx_NcSAG1_NcGRA7 and Lm3Dx_NcSAG1_NcROP2, and the triple mutant, Lm3Dx_NcSAG1_NcGRA7_NcROP2. Six experimental groups of female BALB/c mice were inoculated intramuscularly three times at two-week intervals with 1 × 107 CFU of the respective vaccine strains. Seven days post-mating, mice were challenged by the subcutaneous injection of 1 × 105 N. caninum NcSpain-7 tachyzoites. Non-pregnant mice, dams and their offspring were observed daily until day 25 post-partum. Immunization with Lm3Dx_NcSAG1 and Lm3Dx_NcSAG1_NcGRA7_NcROP2 resulted in 70% postnatal pup survival, whereas only 50% and 58% of pups survived in the double mutant-vaccinated groups. Almost all pups had died at the end of the experiment in the infection control. The triple mutant was the most promising vaccine candidate, providing the highest rate of protection against vertical transmission (65%) and CNS infection. Overall, integrating multiple antigens into Lm3Dx_SAG1 resulted in lower vertical transmission and enhanced protection against cerebral infection in dams and in non-pregnant mice.
Description
Keywords
Citation
Collections