Publication:
Identification of Canonical Models for Vectors of Time Series: A Subspace Approach

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Verlag
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We propose a new method to specify linear models for vectors of time series with some convenient properties. First, it provides a unified modeling approach for single and multiple time series, as the same decisions are required in both cases. Second, it is scalable, meaning that it provides a quick preliminary model, which can be refined in subsequent modeling phases if required. Third, it is optionally automatic, because the specification depends on a few key parameters which can be determined either automatically or by human decision. And last, it is parsimonious, as it allows one to choose and impose a canonical structure by a novel estimation procedure. Several examples with simulated and real data illustrate its application in practice.
Description
Keywords
Citation
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19 (6), 716-723. Arun, K., & Kung, S. (1990). Balanced approximation of stochastic systems. SIAM Journal of Matrix Analysis and Applications, 11 (1), 42-68. Athanasopoulos, G., Poskitt, D., Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-a-vis the echelon form. Econometric Reviews, 31 (1), 60–83. Bauer, D. (2001). Order estimation for subspace methods. Automatica, 37, 1561-1573. Bauer, D. (2005a). Asymptotic properties of subspace estimators. Automatica, 41, 359-376. Bauer, D. (2005b). Comparing the CCA subspace method to pseudo maximum likelihood methods in the case of no exogenous inputs. Journal of Time Series Analysis, 26 (5), 631-668. Bauer, D. (2005c). Estimating linear dynamical systems using subspace methods. Econometric Theory, 21, 181-211. Bauer, D., & Buschmeier, R. (2021). Asymptotic properties of estimators for seasonally cointegrated state space models obtained using the CVA subspace method. Entropy, 23, 436. Bauer, D., & Deistler, M. (1999). Balanced canonical forms for system identification. IEEE transactions on automatic control, 44 (6), 1118–1131. Bauer, D., & Jansson, M. (2000). Analysis of the asymptotic properties of the MOESP type of subspace algorithms. Automatica, 36, 497-509. Bauer, D., & Ljung, L. (2002). Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms. Automatica, 38, 763- 773. Bauer, D., & Wagner, M. (2002). Estimating cointegrated systems using subspace algorithms. Journal of Econometrics, 111, 47-84. Box, G., & Jenkins, G. (1970). Time series analysis, forecasting and control. Holden-Day, San Francisco. Box, G., Jenkins, G., Reinsel, G., Ljung, G. (2015). Time series analysis: Forecasting and control. Wiley Series in Probability and Statistics. Burr, I. (1976). Statistical quality control methods. Marcel Dekker, New York. Casals, J., Garcia-Hiernaux, A., Jerez, M. (2012). From general State-Space to VARMAX models. Mathematics and Computers in Simulation, 80 (5), 924-936. Casals, J., Garcia-Hiernaux, A., Jerez, M., Sotoca, S., Trindade, A. (2016). State-space methods for time series analysis: Theory, applications and software. Chapman-Hall / CRC Press. Casals, J., Jerez, M., Sotoca, S. (2002). An exact multivariate model- based structural decomposition. Journal of the American Statistical Association, 97 (458), 553-564. Casals, J., Sotoca, S., Jerez, M. (1999). A fast and stable method to compute the likelihood of time invariant state space models. Economics Letters, 65 (3), 329-337. Casals, J., Sotoca, S., Jerez, M. (2013). Single versus multiple-source error models for signal extraction. Journal of Statistical Computation and Simulation, 85 (5), 1053–1069. Deistler, M., Peternell, K., Scherrer, W. (1995). Consistency and relative efficiency of subspace methods. Automatica, 31, 12, 1865-1875. Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49 (4), 1057–1072. Favoreel, W., De Moor, B., Van Overschee, P. (2000). Subspace state space system identification for industrial processes. Journal of Process Control, 10, 149-155. Garcia-Hiernaux, A. (2011). Forecasting linear dynamical systems using subspace methods. Journal of Time Series Analysis, 32 (5), 462-468. Garcia-Hiernaux, A., Jerez, M., Casals, J. (2009). Fast estimation methods for time series models in state-space form. Journal of Statistical Computation and Simulation, 79 (2), 121-134. Garcia-Hiernaux, A., Jerez, M., Casals, J. (2010). Unit roots and cointegration modeling through a family of flexible information criteria. Journal of Statistical Computation and Simulation, 80 (2), 173-189. Garcia-Hiernaux, A., Jerez, M., Casals, J. (2012). Estimating the system order by subspace methods. Computational Statistics, 27 (3), 411-425. Gevers, M.R. (1985). ARMA models, their Kronecker indices and their McMillan degree. International Journal of Control, 6 (43), 1745–1761. Golub, G., & Van Loan, C. (1996). Matrix computations. John Hopkins University Press, Baltimore. Hannan, E.J., & Deistler, M. (1988). The statistical theory of linear systems. John Wiley & sons, New York. Hannan, E.J., & Kavalieris, L. (1984a). A method for autoregressive-moving average estimation. Biometrika, 71, 273–80. Hannan, E.J., & Kavalieris, L. (1984b). Multivariate linear time series models. Advances in Applied Probability, 16, 492-561. Hannan, E.J., & Quinn, B. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B, 41 (2), 713-723. Hannan, E.J., & Rissanen, J. (1982). Recursive estimation of mixed autoregressive-moving average order. Biometrika, 69, 81–94. Ho, B., & Kalman, R. (1966). Effective construction of linear state-variable models from input-output functions. Regelungstechnik , 14, 545-548. Jenkins, G., & Alavi, A. (1981). Somes aspects of modelling and forecasting multivariate time series. Journal of Time Series Analysis, 1 (2), 1–47. Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59, 1551-1580. Kwiatkowski, D., Phillips, P., Schmidt, P., Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54 (1-3), 159–178. Larimore, W.E. (1990). Canonical variate analysis in identification, filtering and adaptive control. Proceedings of the 29th Conference on Decision and Control, Hawaii, 596-604. Li, H., & Tsay, R.S. (1998). A unified approach to identifying multivariate time series models. Journal of the American Statistical Association, 93 (442), 770-782. Ljung, G., & Box, G. (1978). On a measure of lack of fit in time series models. Biometrika, 65 (2), 297–303. Luenberger, D.G. (1967). Canonical forms for linear multivariate systems. IEEE Transactions on Automatic Control, 12, 290-293. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer-Verlag, Berlin. Lütkepohl, H., & Poskitt, D.S. (1996). Specification of echelon form VARMA models. Journal of Business and Economic Statistics, 14 (1), 69-79. Makridakis, S.G., Wheelwright, S.C., McGee, V.E. (1983). Forecasting: Methods and applications. John Wiley & Sons, New York. Martin-Manjon, R., & Treadway, A. (1997). The Fed controls only one of the two interest rates in the US economy. ICAE working Paper 9716. Nsiri, N., & Roy, R. (1992). On the identification of ARMA echelon-form models. Canadian Journal of Statistics, 20, 369-386. O’Donovan, T.M. (1983). Short-term forecasting. John Wiley & Sons, New York. Peternell, K. (1995). Identification of linear dynamical systems by subspace and realization-based algorithms (Unpublished doctoral dissertation). TU Wien. Peternell, K., Scherrer, W., Deistler, M. (1996). Statistical analysis of novel subspace identification methods. Signal Processing, 52, 161-177. Poskitt, D.S. (1992). Identification of echelon canonical forms for vector linear processes using least squares. The Annals of Statistics, 20, 195-215. Poskitt, D.S. (2016). Vector autoregressive moving average identification for macroeconomic modeling: A new methodology. Journal of Econometrics, 192, 468-484. Qin, S.J. (2006). An overview of subspace identification. Computers and Chemical Engineering, 30, 1502-1513. Quenouille, M.H. (1957). The analysis of multiple time series. Griffin, London. Reinsel, C.G. (1997). Elements of multivariate time series analysis (2nd ed.). Springer-Verlag, New York. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6 (2), 461-464. Tiao, G.C., & Box, G.E.P. (1981). Modeling multiple time series with applications. Journal of the American Statistical Association, 76, 802-816. Tiao, G.C., & Tsay, R.S. (1989). Model specification in multivariate time series. Journal of the Royal Statistical Society, Series B, 51 (2), 157-213. Tsay, R.S. (1989a). Identifying multivariate time series models. Journal of Time Series Analysis, 10 (4), 357-372. Tsay, R.S. (1989b). Parsimonious parametrization of vector autoregressive moving average models. Journal of Business and Economic Statistics, 7 (3), 327-341. Van Overschee, P., & De Moor, B. (1994). N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30 (1), 75-93. Van Overschee, P., & De Moor, B. (1995). A unifying theorem for three subspace system identification algorithms. Automatica, 31 (12), 1853-1864. Verhaegen, M. (1994). Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 30 (1), 61-74. Wei, W. (2006). Time series analysis univariate and multivariate methods (2nd ed.). Addison Wesley, New York. Wold, H.O.A. (1964). A study in the analysis of stationary time series. Almqvist and Wiksell, Uppsala.
Collections