
ECG baseline wander removal and

noise suppression analysis in an

embedded platform

Proyecto Fin de Máster
en Ingenieŕıa de Computadores

Máster en Investigación en Informática, Facultad de
Informática, Universidad Complutense de Madrid

Autor: Vı́ctor Barbero Romero

Profesor director: David Atienza Alonso

Profesora colaboradora: Nadia Khaled, UC3M.

Curso 2008-2009

Abstract

ECG signal processing in an embedded platform is a challenge which has to deal with

several issues. One of the commonest problems in ECG signal processing is baseline

wander removal and noise suppression, which determine posterior signal process. In

this report, two filtering techniques are presented and implemented to work on a

Shimmer platform. Baseline wander removal based on cubic splines and morphological

filtering are evaluated to check whether are suitable for realtime execution. The use

of cubic splines is made to estimate the baseline wander in an ECG signal and then

substract it from the input dataset to remove the baseline wander. Morphological

operators are useful for signal processing and noise suppression. These techniques have

been implemented and tested by a wavelet-based delineation algorithm and results are

provided for comparison purposes. The project goal is to develop an implementation

for baseline wander removal and noise suppression to be executed on an embedded

platform, meeting its specific hardware constraints, and leaving room for posterior

signal processing. This would allow to design a Wireless Body Sensor Network to

support non-ambulatory healthcare.

Keywords: ECG, signal processing, noise suppression, baseline correction, embedded

platform, cubic spline, morphological filtering.

Resumen

El procesamiento de señal de electrocardiograma (ECG) en un sistema empotrado es

un reto que tiene que afrontar distintas facetas. Uno de los problemas más comunes

en el procesamiento de ECG es la eliminación de baseline wander y la supresión de

ruido, que condiciona el posterior procesamiento de la señal. En esta memoria se

presentan dos técnicas de filtrado que se han implementado en un nodo Shimmer.

La eliminación de baseline wander basada en cubic splines y un filtrado morfológico

son evaluados para comprobar si son asumibles para su ejecución en tiempo real. El

uso de cubic splines se realiza para estimar el baseline wander en una señal de ECG

y eliminarlo. Los operadores morfológicos se utilizan para eliminación de baseline

wander y supresión de ruido. Estas técnicas han sido implementadas y evaluadas por

un algoritmo de delineación basado en wavelets, presentando sus resultados para su

comparación. El objetivo del proyecto es desarrollar una implementación de filtrado

para ser ejecutada en un sistema empotrado, asumiendo sus limitaciones hardware y

permitiendo un posterior procesamiento de la señal. Esto permitiŕıa entonces diseñar

una Wireless Body Sensor Network para potenciar el cuidado de la salud fuera de un

contexto ambulatorio.

Palabras clave: ECG, procesamiento de señal, supresión de ruido, corrección de

baseline, sistema empotrado, cubic spline, filtrado morfológico.

Contents

1 Introduction 4

1.1 ECG signal processing . 4

1.2 Wireless Body Sensor Networks 8

1.3 The Shimmer platform . 9

1.4 State of the art . 10

1.5 Project goal . 12

2 Use of cubic splines 13

2.1 Description . 13

2.2 Implementation . 18

3 Morphological filtering 25

3.1 Description . 25

3.2 Implementation . 28

4 Results 43

5 Conclusions and future work 62

6 International publications derived from this work 64

7 References 65

3

Chapter 1

Introduction

1.1 ECG signal processing

The function of the human body is based on signals of electrical, chemical or

acoustic origin. Such signals provide information which may not be immedi-

ately perceived but which is hidden in the structure of the signal. This hidden

information has to be decoded in some way before the signals can be given

useful interpretations. The decoding of body signals has been found helpful

in explaining and identifying several pathological conditions. This decoding

process is sometimes easy to perform since only involves a limited manual ef-

fort such as visual inspection of the signal printed on a paper or in a computer

screen. However, there are signals whose complexity is often considerable and,

therefore, biomedical signal processing has become an indispensable tool for

extracting clinically significant information hidden in the signal.

The process of biomedical signals is an interdisciplinary topic. It is needed

some knowledge about the physiology of the human body to avoid the risk

of designing an analysis method which may distort or even remove significant

medical information. Of course, it is also valuable to have a good knowledge of

other topics such as linear algebra, calculus, statistics and circuit design. Some

decades ago, when computers first arrived in the area of medicine, automation

was the main goal, but this has been modified over the years, since a physician

must be ultimately responsible for the diagnostic decisions taken. Nowadays,

the goal is develop computers systems which offer advanced aid to the physician

in making decision.

Historically, biomedical signals have been assessed visually and manual

ruler-based procedures were developed to make sure that those measurements

4

CHAPTER 1. INTRODUCTION 5

could be obtained in a standardized manner. However, there is relatively poor

concordance between manually obtained measurements, since they depend on

the personal criteria of a physician. The introduction of computer-based meth-

ods for the purpose of quantifying different signal characteristics is the result

of a desire to improve measurement accuracy as well as reproducibility.

Another challenge for biomedical signal processing is to extract features

to help to characterize and understand the information contained in a signal.

These feature extraction methods can be designed to mimic manual measure-

ment and support the diagnosis made by a physician whereas they are often

designed to extract information which is not easy to find through simple visual

assessment. For instance, small variations in heart rate cannot be perceived

by the human eye but they have been found to contain very valuable clinical

information.

In many situations, the recorded signal is corrupted by different types of

noise and interference, originated by another physiological process of the body.

When an electrode is poorly attached to the body surface or when an external

source such as the sinusoidal 50Hz powerline interferes with the signal, the

recorded signal is distorted in a way that it could be difficult to perform any

automatic diagnosis. Therefore, noise reduction represents a crucial objective

of biomedical signal processing. In some cases, the desired signal is so drasti-

cally masked by noise that its presence can only be revealed once appropriate

signal processing and noise suppression has been performed.

There are three major clinical contexts in which algorithms for biomedical

signal processing are designed: diagnosis, therapy and monitoring. In the di-

agnosis context, medical conditions are identified by the examination of signal

information. This signal is acquired by non-invasive procedures which makes

the examination less taxing on the patient. A diagnostic decision rarely re-

quires immediate availability of the results from signal analysis, so this process

can be done offline on a PC.

With regard to biomedical signal processing, therapy may imply the use

of an algorithm to modify the behavior of certain physiological processes, as

a pacemaker does with respect to cardiac activity. This algorithm is designed

for its implementation in an implantable device like a heart defibrillator and,

therefore, it must meet the demands of online and realtime analysis. Such de-

mands determine serious constraints in terms of algorithmic complexity, maxi-

mal acceptable time delay and power consumption -the battery of a pacemaker

is expected to last up to ten years. Biomedical signal processing algorithms

are also an important part of realtime systems for monitoring of patients, spe-

CHAPTER 1. INTRODUCTION 6

cially for those who suffer from a life-threatening condition. Systems needed in

this clinical context are designed to detect changes in cardiac or neurological

function. Thanks to this, irreversible damage can sometimes be prevented.

The electrocardiogram -ECG- describes the electrical activity of the

heart. It is obtained by placing electrodes on the chest, arms and legs. With

every heartbeat, an impulse travels through the heart, which determines its

rhythm and rate and causes the heart muscle to contract and pump blood. The

voltage variations measured by the electrodes are cause by the action poten-

tials of the excitable cardiac cells, as they make the cells contract. The ECG is

characterized by a series of waves whose morphology and timing provide infor-

mation used for diagnosing diseases reflected by disturbances of the electrical

activity of the heart. The time pattern that characterizes the occurrence of

successive heartbeats is also very important.

The first ECG recording device was developed by the Dutch physiologist

Willem Einthoven, using a string galvanometer which was sensitive enough

to record electrical potentials on the body surface. He also defined sites for

electrode placement on the arms and legs which remain in use today. Since

then, ECG recording has developed incredibly and become an indispensable

tool in many different contexts. The ECG record is used today in a wide

variety of clinical applications. Its importance has been strengthened thanks

to the discoveries of subtle variability patterns which are present in rhythm or

wave morphology.

The electrodes used for ECG recording are positioned so that the spa-

tiotemporal variations of the cardiac electrical field are sufficiently well-reflected.

The difference in voltage between a pair of electrodes is referred to as a lead.

The ECG is typically recorded with a multiple-lead configuration. The elec-

trode wires are connected to a differential amplifier specially designed for bio-

electrical signals. The ECG ranges from a few microvolts to about 1V in

magnitude. Whereas the characteristic waves of an ECG have a maximal

magnitude of only few millivolts, a wandering baseline in the ECG due to vari-

ations in electrode-skin impedance may reach 1V. The amplifier bandwith is

commonly between 0.05 and 100-500Hz.

The characteristic waves of an ECG are shown in the following image.

Atrial depolarization is reflected by the P wave, and ventricular depolariza-

tion is reflected by the QRS complex, whereas the T wave reflects ventricular

repolarization. The amplitude of a wave is measured with reference to the

ECG baseline level, commonly defined by the isoelectric line which immedi-

ately precedes the QRS complex.

CHAPTER 1. INTRODUCTION 7

Wave definitions of a heart beat and important wave durations and intervals.

One of the main reasons for computer-based ECG analysis is the capability

to improve poor signal quality thanks to the use of signal processing algo-

rithms. There are several most common types of noise and artifacts in the

ECG. The baseline wander is an extraneous, low-frequency activity in the

ECG which may interfere with the signal analysis, making the clinical inter-

pretation inaccurate. When baseline wander takes place, ECG measurements

related to the isoelectric line cannot be computed since it is not well-defined.

Baseline wander is often exercise-induced and may have its origin in a vari-

ety of sources, including perspiration, respiration, body movements and poor

electrode contact. The spectral content of the baseline wander is usually in

the range between 0,05-1Hz [11] but, during strenuous exercise, it may contain

higher frequencies.

The electromyographic noise is caused by the electrical activity of skele-

tal muscles during periods of contraction, commonly found in ECGs recorded

during ambulatory monitoring exercise. Different muscles are active in pro-

ducing the noise which corrupts the ECG signal. This kind of noise can either

be intermittent in nature, due to a sudden body movement or have more sta-

tionary noise properties. The frequency components of this noise considerably

overlap those of the QRS complex.

CHAPTER 1. INTRODUCTION 8

1.2 Wireless Body Sensor Networks

A Wireless Sensor Network -WSN- is a network composed of very small devices

called nodes and, usually, a base station which stands for communication and

nodes control. The nodes in a WSN are spread to measure a set of parameters

and because of this, a wireless communication among nodes and between a

node and a base station is needed.

There is a wide variety of issues, regarding science, government, health that

calls for high fidelity and realtime observations of physical world. A network

of smart wireless sensors could help to reveal what was previously unobserved

in the location in which a phenomenon is taking place. Therefore, there is

a challenge to design physically-coupled, robust, scalable and distributed sys-

tems based on embedded networked sensors. These nodes can help to monitor

physical world and, by the use of its ad-hoc network, to coordinate and per-

form high-level identification. The information gathered by those nodes can

be processed to perform a realtime embedded analysis thanks to which several

actions could be taken after deciding whatever it may be necessary.

Those nodes in a WSN are supposed to work independently and are de-

signed specifically to support an analysis process. The behaviour of a WSN

is directly dependent on the process it is designed for. For instance, in the

biologic research field, non-invasive habitat monitoring and a study of wildlife

populations could be possible thanks to a WSN. Environmental monitoring,

agriculture, architecture, transportation, military services, traffic report, stock

management, healthcare... are fields in which the use of a WSN could help to

improve the productivity.

Nodes in a WSN are basically composed of sensors, to recollect information,

a microcontroller, to process that information and a radio transceiver to com-

municate the information to a base station or between nodes in the network.

There are different types of node with regard to the main goal to achieve: low-

power consumption or high-performance are topics taken into consideration by

manufacturers.

The software in a node can be either a stand-alone application or an oper-

ating system. A stand-alone application provides the programmer an accurate

control of the hardware but, in some cases, it could lead to hardware-dependent

applications difficult to port. On the other hand, the use of an operating system

provides advanced features such as task scheduling and inter-process commu-

nication. Typical tasks to be performed by the applications in the node are

the control of sensor sampling and transmission frequencies, data aggregation

CHAPTER 1. INTRODUCTION 9

and signal processing to filtered the sensed signal and compress it so that the

amount of data to be sent is reduced.

In the healthcare field, a Wireless Body Sensor Network enables continuous

biomedical monitoring and care to support prevention and early diagnosis of

diseases and, on the other hand, it allows to enhance patient autonomy thanks

to not having to carry out an ambulatory test. Regarding the ECG recording,

since they are done by placing electrodes on the body surface, it could be

possible to perform a realtime ECG analysis by using several nodes placed in

the skin.

These nodes have to use its sensors to gather ECG information, filter and

process it and, just in case, communicate any circumstance detected. ECG

monitoring has been performed by using a bulky patient unit or wirelessly

transmitting the ECG to a monitoring system without processing. The use of

a WBSN could achieve a real patient autonomy while the monitoring process

is going on. By exploiting the limited processing power and memory resources

of the nodes, it could be possible to perform an online detection of the fiducial

waves of the ECG signal and, by interpreting that information, an online

diagnosis of arrhythmias.

1.3 The Shimmer platform

Shimmer [23] is a small wireless sensor platform designed to support wearable

applications. Its size and technology stands for low power consumption so that

it can be used as a test node for WBSN healthcare application.

It is based on the Texas Instrument MSP430F1611 processor, which works

at a maximum frequency of 8MHz and has 10KB of RAM and 4KB of Flash

memory. It is equipped with several peripherals such as digital I/O, analog to

digital converters, 802.15.5 radio, Class 2 Bluetooth radio, a MicroSD slot...

and it is a proven solution in medical sensing applications. There is a ECG

board daughter card to capture ECG data.

The MSP430F1611 is a 16-bit ultra low-power microcontroller based on

a RISC architecture. The CPU is integrated with 16 registers that provides

reduced instruction execution time, since the register-to-register operation ex-

ecution time is one cycle of the CPU clock long. The instruction set consists

of 51 instructions with seven address modes. Each instruction can operate on

word and byte data. 24 of these instructions are emulated: they do not have

op-code themselves and are replace automatically by the assembler with an

CHAPTER 1. INTRODUCTION 10

equivalent core instruction.

The microcontroller does not have a floating point unit and all the float-

ing point operations required are transformed into several integer compatible

operations. It does not support hardware division but it has a hardware mul-

tiplier. All the division and multiplication operations by a multiple of 2 are

converted into a shifting operation. The compiler provides translation for di-

vision operations into equivalent integer ones whereas the hardware multiplier

is used to execute multiplications which cannot be translated.

1.4 State of the art

The removal of the baseline wander in an ECG signal has been one of the first

challenges in biomedical signal processing. The two major techniques employed

for the removal of baseline wander are linear filtering and polynomial fitting.

The design of a linear, time-invariant, highpass filter involves the consider-

ation of choosing the filter cut-off frequency and phase response characteristic.

Obviously, the cut-off frequency should be chosen so that the clinical infor-

mation in the ECG remains undistorted, so it is essencial to find the lowest

frequency component of the ECG spectrum. Since the heart beat is not regu-

lar it is needed to choose a lower cut-off frequency, approximately Fc = 0.5Hz.

Linear phase filtering is needed to prevent phase distortion from altering char-

acteristic waves in the cardiac cycle. Finite impulse response filters can have

an exact linear phase response, whereas infinite impulse response -IIR- filters

introduce signal distortion due to nonlinear phase response. To avoid this

non-linear phase response in an IIR filter, the use of forward-backward filter-

ing stands as a remedy since the overall result is filtering with a zero-phase

transfer function.

Unfortunately, filtering based on that cut-off frequency cannot sufficiently

remove baseline wander that may occur, for instance, during a stress test, so the

use of a linear time-invariant filtering would limit the use of an implementation

to an ambulatory resting context. For this purpose, calculate the heart rate

as inversely proportional to the RR interval length is a simple but useful way.

Then, it could be possible to relate a time-varying cut-off frequency fc(n) to the

heart rate so that a low-pass filter could be integrated with the filter structure.

Linear filtering based on filters with variable cut-off frequency was initially

suggested for off-line processing of ECG signals [24] and then extended for use

in on-line processing [25]. Other approaches to linear, time-variant filtering

have also been described based on adaptive, LMS techniques [26].

CHAPTER 1. INTRODUCTION 11

An alternative to baseline wander removal with linear filtering is to fit a

polynomial to representative samples of the ECG, with one knot being defined

for each beat. The polynomial estimating the baseline is fitted by requiring

it to pass through each of the knot smoothly. This technique requires that

the QRS complexes first be detected and it needs the PQ intervals to be

accurately detected. This baseline wander removal technique is implemented

and evaluated in this project.

Muscle noise -electromyographic noise- is a major problem in many ECG

applications. Muscle noise is not removed by narrowband filtering but repre-

sents a much more difficult problem since the spectral content of muscle activity

considerably overlaps that of the PQRST complex. Successful noise reduction

by ensemble averaging is, however restricted to one particular QRS morphol-

ogy at a time and requires several beats to work properly. One approach to

muscle noise filtering is to use a filter with a variable frequency response, such

as a Gaussian impulse response. The resulting performance on ECG signal of

this techniques can be found in [27]. An application of this variable frequency

response filtering to the baseline wander removal challenge can be found on

[28]. However, time-varying properties may introduce artificial waves: a fil-

ter that provides considerable smoothing of the low-frequency ECG segments

outside the QRS complex is likely to result in undesirable effects during the

transitional periods. This distortion renders the filtered signal unsuitable for

diagnostic interpretation of the ECG. There is a host of additional techniques

to muscle noise reduction, but no single method has gained wide acceptance for

use in clinical routing. As a result, the muscle noise problem remains largely

unsolved.

In the field of WBSN, the ECG signal processing for embedded platforms

represents a major challenge. Filtering techniques proposed require, overall, a

good computation performance due to the use of floating point operations. To

support realtime filtering, implementations based on these techniques have to

meet the hardware constraints of that kind of platforms. Except for high per-

formance nodes, no floating point hardware units are available. Furthermore,

the amount of memory available is also a bound.

The ECG signal processing in an embedded platform concerns several issues

related, such as signal filtering, signal compression, ECG delineation... These

challenges are being on development under several research projects in our

University as well as in the community interested in this field. CodeBlue [29]

is an approach to healthcare based on WBSN. It is designed so that nodes

collect heart rate and oxygen saturation to send data to a PDA in realtime.

Devices raise an alert in case vital signs fall outside normal parameters.

CHAPTER 1. INTRODUCTION 12

The project here presented stands for the search of an efficient and high

performance baseline wander removal and noise suppression implementation to

allow posterior ECG delineation and interpretation in an embedded platform.

1.5 Project goal

The goal of this project is to implement a baseline wander removal and noise

suppression filter to work on the Shimmer wearable sensor platform. For this

purpose, two baseline wander removal techniques are implemented and then

tested. These techniques have been designed to work offline so a realtime

implementation is a challenge regarding the limited resources offered by the

Shimmer platform. Electromyographic noise suppression is analyzed by an

implementation based on morphological filtering. Baseline wander removal is

done by the use of cubic splines and of morphological operators.

As input dataset, we will use the Physionet QT database [2] and to analyze

the filtering result, a wavelet-based delineation algorithm [10] will help us to

check whether the delineation after the filtering process is good enough to

perform realtime ECG analysis so that, for instance, an arrhythmia diagnosis

could be carried out later on.

Having a suitable baseline wander removal and noise suppression imple-

mentation for the Shimmer platform may help to design a Wireless Body

Sensor Network in which each node would perceive ECG data and, after a

filtering process, perform any other operation such as delineation, arrhythmia

detection, signal compression...

Chapter 2

Use of cubic splines

2.1 Description

The following process of baseline wander removal is based on the paper by

C. R. Meyer and H. N. Keiser [4]. There have been several approaches, as

explained above, to the baseline wander removal problem. The technique here

presented uses a polynomial to try to adapt to the baseline wander. In each

beat, a representative sample is defined and called ”knot”. These knots in the

input signal are chosen from the silent isoelectric line which, in most heart

rhythms, is represented by the PQ interval.

This technique comes from the work of some investigators who tried to

adapt a straight-line to the segments connecting the pre-P-wave period and

the post-T-wave period of each beat as successive baseline estimates. While

this solution preserves low-frequency heart activity and leads to a small com-

putational cost, such a first-order estimator can only accurately track baselines

of very low frequencies [12]. Furthermore, the resulting baseline estimate does

not adapt properly to the variations and, what is worse, its derivatives at the

knots are discontinuous.

Increasing the order of the polynomial and selecting one knot per beat

through which the baseline estimation must pass is the method used to remove

higher-frequency baseline noise and preserve low-frequency heart information,

which is useful for other processes to apply after the baseline wander removal.

By using higher-order polynomials, the likelihood of producing an accurate

baseline estimate increases, although it is obviously linked to an increased

computational complexity.

Instead of letting the order increase as the number of knots does, third-

13

CHAPTER 2. USE OF CUBIC SPLINES 14

order polynomial fitting to successive triplets of knots represents a popular

approach [4 and 13] and leads to good results in terms of baseline removal. This

technique requires the QRS complexes to be detected and the corresponding

PQ intervals to be accurately determined. It is chosen one averaged point in

each PQ segment of the ECG as sample of the baseline. This segment is used

because of the ease and accuracy in locating it.

At each PQ segment there is a knot through which the baseline noise esti-

mator must pass. By fitting a third-order polynomial through these knots in

the ECG signal we get the estimation for the baseline. These knots could be

also defined by the end of the P wave. The polynomial is fitted in such a way

that, one subtracted to the original signal, these knots have a value of 0.

ECG signal with three knots and the cubic spline baseline wander estimation

y(t)

This technique intuitively approaches the benefits of using Lagrange’s method

to define a polynomial passing through all of the PQ-segment knots of the to-

tal ECG record without the penalties in complexity associated to high-order

CHAPTER 2. USE OF CUBIC SPLINES 15

polynomials. If we used Lagrange’s method over a 20 sec record of ECG at

60bpm, the result would be nearly a 20th-order polynomial to be evaluated at

each sample point in the record.

The use of this technique in an embedded platform has to consider the fact

that we need to defined accurately the PQ interval in each beat. Fortunately,

the paper suggests a PQ-segment locator, although we have had to redefine

its working process. Furthermore, computing the polynomial in the interval

of the input signal which is between three following beats leads to a memory

consumption which has to be taken into consideration, as shown below. Finally,

the function used to fit the polynomial requires some operations that are not

easy to perform in a embedded platform as the MSP430.

The first step is to locate the knots of the successive beats in the input

signal. These knots are denoted for the signal x(t) as

x(ti), i = 0, 1, 2, . . . ,

The baseline estimate y(t) is computed for the interval [ti, ti+1] by incor-

porating the three knots x(ti), x(ti+1), x(ti+2) into the Taylor series expanded

around ti.

y∞(t) =
∞

∑

l=0

(t − ti)
l

l!
y(l)
∞

(ti)

For a third-order polynomial description, this series is truncated to

y(t) = y(ti) + (t − ti)y
′(ti) +

(t − ti)
2

2
y′′(ti) +

(t − ti)
3

6
y′′′(ti)

And the series expansion for the first derivative y′(t) is

y′(t) = y′(ti) + (t − ti)y
′′(ti) +

(t − ti)
2

2
y′′′(ti)

At t = 0 we assume, to get this technique working, that

y(0) = x(0)

We must approximate the first derivative y′(ti) at ti by the slope between

x(ti+1) and x(ti)

y′(ti) =
x(ti+1) − x(ti)

ti+1 − ti

CHAPTER 2. USE OF CUBIC SPLINES 16

As shown in [14], classical splines of order three and higher, in which only

the highest derivative is discontinuous, suffer stability problems during com-

putation so we define both y(t) and y′(t) at each knot to arrive at a stable

solution.

At the next beat, and to keep the cubic spline adapted to pass through all

the knots considered, we must approximate, once more,

y′(ti+1) =
x(ti+2) − x(ti)

ti+2 − ti

To find the remaining two variables y′′(ti) and y′′′(ti) in y(t) the Taylor

series for y(t) and y′(t) is studied for t = ti+1

y(ti+1) = y(ti) + y′(ti)(ti+1 − ti) + y′′(ti)
(ti+1 − ti)

2

2
+ y′′′(ti)

(ti+1 − ti)
3

6

and

y′(ti+1) = y′(ti) + y′′(ti)(ti+1 − ti) + y′′′(ti)
(ti+1 − ti)

2

2

To get the cubic spline to pass through this knot

y(ti+1) = x(ti+1)

Inserting these values of y(ti+1) and y′(ti+1) into the previous equations we

get

y′′(ti) =
6(y(ti+1) − y(ti))

(ti+1 − ti)2
−

2(2y′(ti) + y(ti+2)−y(ti)
(ti+2−ti)

)

(ti+1 − ti)

y′′′(ti) = −
12(y(ti+1) − y(ti))

(ti+1 − ti)3
+

6(y′(ti) + y(ti+2)−y(ti)
(ti+1−ti)

)

(ti+1 − ti)2

where, as we know,

y(ti+2) = x(ti+2)

We have then the baseline estimate y(t) completely specified to be com-

puted in the interval [ti, ti+1]. To get the signal without baseline wander we

have to subtract from the ECG signal samples in that interval the baseline

estimate y(t). Then, this procedure has to be repeated for the next interval

[ti+1, ti+2] using the knots xi+1, xi+2 and so on.

The performance of the cubic spline technique is critically dependent on

the accuracy of the knot determination. The PQ interval is relatively easy to

CHAPTER 2. USE OF CUBIC SPLINES 17

delimit in ECGs recorded during resting conditions but it may be difficult to

find in recordings with muscle noise or when certain types of arrhythmias are

present, such as ventricular tachycardia, which distorts severely the ECG signal

and makes the location process almost impossible. When these circumstances

take place, the PQ interval is not well-defined and, therefore, this technique is

inapplicable.

On the other hand, this approach to baseline wander removal results in

a time-variable cut-off frequency linear filtering since the baseline estimate

tracks rapid baseline wander when a fast heart rate is encountered. More knots

become available at faster heart rates, so the segment between beats is shorter

and the cubic spline can adapt itself better to the knots located. According

to this, polynomial fitting performs poorly when the available knots are too

far apart since the interval between ti and ti+1 is too long to achieve a proper

estimation.

Taking this into consideration, we must determine the PQ-interval knot as

accurately as possible. In [4], it is detailed how to locate the knot for each

beat. The location in time of the PQ-interval knot is placed 66msec before

the Q-wave’s maximum downslope. This might seem a simple approach but

having chosen this time distance between the maximum slope and the knot as

a constant makes the knot detection to trigger in the same relative position

in each beat. Therefore, we get a sample point in each beat next to the

beginning of the QRS complex which can be considered as belonging to the

silent isoelectric line and, due to the use of the cubic spline and by adjusting

it to the knots located, we get always a spline which pass through the same

relative points in each beat, which is the purpose of this technique.

The first step in locating the PQ-interval knot is to detect the Q-wave’s

maximum downslope. The downslope of the ECG signal at any sample with

time index t is computed using an average negative slope estimate where

downslope(t) = x(t − 3) + x(t − 1) − x(t + 1) − x(t + 3)

Since we are using a 250Hz sampling frequency, the time interval between

two adjacent samples is 2msec. It is defined to detect the maximum downslope

in the working sample when the computed downslope value exceeds 60% of the

previous maximum.

Once the PQ-knot is located following the previous procedure, the ordinal

value for the knot is calculated as the average ordinal value of the four data

points which are nearest to the sample in which the knot has been detected.

Using these four points to estimate the ordinal value of the knot eliminates the

CHAPTER 2. USE OF CUBIC SPLINES 18

effects of the 60Hz noise, according to the data sampling frequency of 250Hz:

an average over four points acquired at 250Hz spans 16msec or nearly one

cycle of 60Hz noise. As shown in [4], from digital filtering theory, we know

that averages consisting of symmetrically space points spreading exactly over

one cycle of a sinusoidal signal are not biased by that signal component.

At this point, we are able to implement the technique proposed for baseline

wander removal: we must get the locator working to calculate, for each data

sample, the downslope. If the computed downslope exceeds 60% of the previous

maximum, we know that the knot is 17 data samples (66msec at 250Hz) before

the point which triggers the downslope. Then, by averaging the four points

next to and including this sample, we get the ordinal value of the knot, which

is going to be considered as x(ti). As shown before, we need three consecutive

beats which its correspondent knots to start calculating the cubic spline, so

we need to store in memory the data samples from the knot at ti to the last

sample of the third beat and, when it is completed, process the first beat.

This takes a lot of memory to operate so, in the next section, it is explained

the implementation proposed and some optimizations to the knot locator.

2.2 Implementation

The implementation of the cubic spline technique has to take into consideration

the fact that the embedded platform used in this project is limited in terms

of memory and computation hardware. As explained before, this technique

leads to a memory consumption that has to be considered and it uses some

mathematical operations that are not directly supported by the platform but

translated into compatible ones by the compiler, resulting in more complex

and slower operations.

At first, we have to begin by implementing the knot locator. This is done

by a static circular buffer in which input samples are stored and by the of use

several indexes to rapid access to those positions of this buffer in which we

can find the samples needed for the downslope calculation. The first samples

of the input ECG signal are only stored and produce no result -or zero output

signal- since are needed to fill the buffer to get enough data to start operating.

Once the buffer is initialized, it keeps storing each input sample. For each

new sample, the downslope value is calculated and then we check whether it

exceeds the 60% of the value of the last maximum downslope as explained

before. This makes the locator enter in the ”search period”: according to [4],

CHAPTER 2. USE OF CUBIC SPLINES 19

during this period, the first downslope value which is less than it predecessor

defines its predecessor’s value as the new maximum and, therefore, we assume

its predecessor is the point of the maximum downslope in the QRS segment.

So, to get the locator working, we must keep storing the value of the downs-

lope of the previous sample and of the sample in which we are working. If we

are searching and the downslope value is less than the last obtained, we finish

the search period, since we have located a knot. Then, we can store the 60%

of its value to trigger the next search period.

Initial overlocation failures until the maximum downslope is achieved

This process, detailed in [4], did not work properly for our purposes. As shown

in the previous image, since there is not an initial maximum downslope value

achieved, the downslope locator is triggered as the first QRS takes place. Ver-

tical red lines are displaced to the left to indicate where the knot is encountered

but, obviously, there is no knot in the downslope. These initial failures would

lead to an extra computation cost because of detecting beats where there are

not. To overcome this problem, we have defined an initial threshold period

of samples in which the downslope calculus is done but no beat is processed.

CHAPTER 2. USE OF CUBIC SPLINES 20

This allows the locator to get an appropriate value of the maximum downslope

without causing trouble in the following steps of the technique.

Another problem encountered in the implementation of the locator was

that, when the QRS downslope takes some time to happen, several maximum

downslope values were detected in the same downslope and, once more, this

results in a overlocation failure. To solve this, we define a 60 samples period at

least between each beat to be detected: the maximum downslope search is not

triggered until there have been 60 samples since the last knot. This makes the

locator to work only for a 250bpm heart rate as a maximum, which we consider

is high enough to ensure the stability of the implementation. Although there

is no agreement in the maximum heart rate that a human can achieve and in

the light that it depends on terms of age [15], the following equation of Inbar

[16] shows that we can assume this 250bpm maximum heart rate.

Max.HeartRate = 205.8 − 0.685age

First knot locations after the initial threshold period

Once the knot is located, we get the average of the four points nearest to

and including it and, as we know, we must start to process the following data

CHAPTER 2. USE OF CUBIC SPLINES 21

samples as belonging to a new beat. To support the fact that we need three

consecutive beats and to store all the information associated with each one,

we use a struct. This struct stores information about the beat concerning how

many data samples long is, the ordinal value of its knot, a pointer to a buffer

in which all the data samples of the beat are stored and how many bits are

needed as a maximum to represent these values.

When a new knot is located, it also means that the previous beat has just

finished. The length of the previous beat is then stored in its associated struct

and, by using a variable to keep track of the maximum sample value in that

beat, we can get how many bits are needed to represent all the values in that

beat. The purpose of this will be explained further below. We can then restart

the length counter and reinitialize the variable for the search of the maximum

value in the new beat.

When a new beat has been detected, it is time to proceed with the cubic

spline procedure in case it is at least the third beat that has taken place.

Otherwise, we have to wait until we have the three first beats detected, with

its associated structs completely filled and all the samples values stored in

memory. While we are online processing, we can operate with the beat before

the previous when a new one is detected. By using the amount of bits needed

to represent all the values in the beat we can get how many bits shift to the

left each sample in the beat to get the best accuracy in all the operations.

For a beat i, and following the equations explained in the previous section,

we need to get the ordinal value of its knot and of the knots of the two following

beats. These values are arithmetically left-shifted to get the most of this

technique. Furthermore, we need the information about how long the beats

i and i + 1 are. With these data, we can obtain y′(ti) and then y′′(ti) and

y′′′(ti). These variables use the length of the beat to the power of 3 and to the

power of 2. Once we get the value of these three variables, which will remain

constant during the process of all the beat, we use a new struct to facilitate

the computation of the result.

If we were able to use a realtime operating system in the node, with a

dispatcher and threads, it would be easy to have two threads in execution to

support this technique: one thread would be responsible for the knot location

and another thread would be in charge of computing the result of this filter

when it had available input data. However, all the tests in the node are made

in a monolithic way so this implementation has to consider itself the scheduling

and production of the result. Thus, a new struct is used to store the values of

y′(ti), y′′(ti) and y′′′(ti), the ordinal value of the knot of the beat, the length

CHAPTER 2. USE OF CUBIC SPLINES 22

of the beat, a pointer to the buffer with all its samples and how many bits the

variables in the calculation have been shifted.

This new struct uses a queue scheme: we will have a pointer to a struct

with the information about the beat in which the computation is taking place

and this struct will also have a pointer to the following struct of a beat ready

to be processed, if it is the case. When the new struct is ready, it is stored

in the process queue. The struct used while the beat was being received via

the input signal and in which had to wait until being processed is no longer

needed, so we can dispose it for lower memory consumption.

Finally, once the new input sample is processed, we pay attention to the

queue to check whether there is a beat to calculate or not. If so, we simulate

realtime operation by providing as output only one new value of the beat

which is first in the queue. With the values stored in its struct inserted into

the equation for y(t), we get the baseline estimation for the sample in which

we are working. Then, subtracting the estimation from the input sample, we

get a new sample of the output signal without baseline wander. After moving

indexes for the circular buffer, and increasing the counter for the length of the

current, the implementation is ready to receive a new input sample.

While we were implementing and testing this technique in a PC platform,

we used float datatypes for the computation of y′(ti), y′′(ti) and y′′′(ti) but the

MSP430 platform does not support floating point computation. Therefore,

we had to adapt the calculation to integer variables. At first, simple integer

implementation is not accurate enough for the calculations needed by this

technique so decided to arithmetically left-shift as much as possible all the

data needed in the computation of those variables to get the best accuracy.

When no shifting is made and integer variables are used, the result is a straight

horizontal line which passes through the knot of each beat.

In terms of calculation, the MSP430 platform meets the requirements of

this technique except for the computation of y′′′(ti). As defined in its equation,

this variable uses the power of 3 of the length of the beat. The MSP430

platform uses 16-bits width registers, so only 40 to the power of 3 can be

operated. Beats whose length is longer than 41 samples, which is obviously

the commonest case -40 samples between each beat means a heart rate of

375bpm-, lead to an overflow in the register. Therefore, the calculation of

y′′′(ti) has to be performed using 32-bits width operations, supported by the

MSP430 but more expensive in terms of computation.

Another factor we have considered is that we do not know how long a beat

is going to be. We can approximate to the length of each beat once we have

CHAPTER 2. USE OF CUBIC SPLINES 23

detected the first beats in the signal but this length cannot be considered as

constant. Therefore, we have to decide the length of the buffer in which all

the data samples of a beat is going to be stored. In our tests, we consider a

maximum length for a beat of 500 samples. This results in a 30bpm minimum

heart rate for this technique to work but, on the other hand, and to improve the

stability of the implementation, we release the maximum downslope restriction

once the length of the current beat is approaching to that limit. This helps to

avoid a buffer overflow and, according to our tests, improves the endurance of

the implementation to artefacts.

The knot locator is sensitive to artefacts by checking the limit of the buffer

The image above shows that this technique supports the presence of ar-

tifacts in the input signal. The second vertical red line corresponds to the

knot location of a downslope that has triggered the locator. However, that

CHAPTER 2. USE OF CUBIC SPLINES 24

downslope does not belong to a QRS complex but it is an artifact or some-

thing truly irregular in the beat. The high downslope of this peak triggers

the knot locator and, thus, defines a new last maximum. The following QRS

complexes and its downslope does not exceed the 60% of the last maximum, so

almost three following beats are ignored. Once the buffer for this pseudobeat

is going to be filled, the last maximum value turns to 0 and then there happen

some overestimation failures. There are four knots located wrongly, until the

last maximum value is properly set again and the technique keeps working as

expected, at the right end of the image.

To conclude with the implementation of this technique the following image

shows how it works for a given input with baseline wander. The vertical red

lines mark the position of the knot in each beat detected. The black ECG

signal is the input signal whereas the dotted spline is the estimation of the

baseline wander. Finally, the blue ECG signal is the result of the baseline

wander removal from the original input signal. The horizontal solid line shows

the zero value.

Input ECG signal, baseline estimation and output signal

Chapter 3

Morphological filtering

3.1 Description

Morphological operators have been widely used in the signal and image pro-

cessing fields because of their robust and adaptive performance in extracting

the shape information in addition to their simple and quick set computation.

The technique here presented is based on the work of Y. Sun et al. published

in [3]. This work comes from a previous development by Chu and Delp, who

used the combined opening and closing operators for baseline correction of

ECG signals and good filtering performance was obtained. However, their

morphological filtering algorithm distorts the characteristic points in the ECG

signal, which is not suitable for our purposes.

Mathematical morphology, based on sets operations, provides an approach

to the development of non-linear signal processing methods, in which the shape

information of a signal is incorporated. In these operations, the result of a

data set transformed by another set depends on the shapes of the two sets

involved. A structuring element has to be designed depending on the shape

characteristics of the signal that is to be extracted.

There are two basic morphological operators: erosion (⊖) and dilation

(⊕). Using erosion and dilation we can define derived operators: opening

(◦) and closing (•). We consider f(n), {n = 0, 1, . . . , N − 1} as a discrete

signal consisting of N points and B(m), {m = 0, 1, . . . ,M − 1} a symmetric

structuring element of M points.

Erosion (⊖) is a shrinking operator in which the values of f ⊖B are always

25

CHAPTER 3. MORPHOLOGICAL FILTERING 26

less than those of f .

(f ⊖ B)(n) = minm=0,...,M−1

{

f
(

n −
M − 1

2
+ m

)

− B(m)

}

Dilation (⊕) is an expansion operator in which the values of f ⊕ B are

always greater than those of f .

(f ⊕ B)(n) = maxm=0,...,M−1

{

f
(

n −
M − 1

2
+ m

)

+ B(m)

}

for n =
{M − 1

2
, . . . , N −

M + 1

2

}

The opening of a data sequence can be interpreted as sliding a structuring

element along the data sequence from beneath and the result is the highest

points reached by any part of the structuring element. Opening is used to

suppress peaks and is defined as: f ◦ B = f ⊖ B ⊕ B. The closing of a data

sequence can be interpreted as sliding a flipped-over version of the structuring

element along the data sequence from above, and the result is the set of lowest

points reached by any part of the structuring element. Closing is often used

to suppress pits and is defined as: f • B = f ⊕ B ⊖ B.

This technique uses a sequence of opening and closing operations to perform

a baseline wander removal and electromyographic noise suppression. Based on

the different characteristics of the baseline drift and the noise contamination

in the ECG signals, different structuring elements and different morphological

operators are used.

The baseline wander removal is performed by removing the drift in back-

ground from the original ECG signal, following the method presented in [17].

To get the baseline estimation we use fb = fo ◦ Bo • Bc and then this baseline

drift is subtracted from the original input signal to get the filtered output sig-

nal. The signal is first opened by a structuring element Bo for removing peaks

in the signal. Then, the resultant waveforms with pits are removed by a closing

operation using the other structuring element Bc. Bo and Bc are defined as

two horizontal line segments of zero amplitude but with different lengths. The

result of this compound operation is then an estimate of the baseline drift fb

and, therefore, the correction of the baseline is then done by subtracting fb

from the original signal fo.

Different lengths in Bc and Bo are used because the construction of the

structuring element for baseline correction depends on the duration of the

CHAPTER 3. MORPHOLOGICAL FILTERING 27

characteristic wave and the sample frequency of the ECG signal FsHz. If the

width of a characteristic wave is Tw(s), the number of samples of that wave

is TwFs so the structuring element Bo should have a length larger than TwFs.

The subsequent closing operation, which uses Bc, takes place to remove the pit

left by the opening operation, so the length of the structuring element Bc must

be longer than the length of Bo. In an ECG signal, the more characteristic

waves are the P wave, the T wave and the QRS complex, which are generally

less than 0.2 sec.

Hence, Lo, the length of Bo is selected as 0.2Fs and Lc, the length of Bc

is typically selected to be longer than Bo, at about 1.5Lo. Since we are using

Fs = 250Hz as sampling frequency, we get Lo = 0.2Fs = 0.2 × 250 = 50 and

Lc = 1.5Lo = 1.5 × 50 = 75.

Closing operation (left) and opening operation (right) with a zero structuring

element (Bo) on a ECG signal

CHAPTER 3. MORPHOLOGICAL FILTERING 28

After baseline correction, noise suppression is performed by an opening and

closing concurrent operation, and then the results are averaged. The opening

and closing operations for noise suppression proposed use a structuring element

pair, Bpair defined as Bpair = {B1, B2} with B1 and B2 different in shape but

equals in length. The process of signal conditioning for noise suppression is

described by

f =
1

2
(fbc ⊕ B1 ⊖ B2 + fbc ⊖ B1 ⊕ B2)

where f is the resultant signal after noise suppression and fbc the signal

after baseline correction. The Bpair is selected by considering the purpose of

analysis and the morphological properties of the ECG signal. B1 is selected

to be a triangular shape, used to retain the peaks and valleys of the charac-

teristic waves, such as the QRS complex. To minimize the distortion to the

ECG signal, the length of B1 is chosen to be the same as that of B2. The

length of both structuring elements is related to the bandwidth of the ECG

signal and the sampling rate. Since the sampling frequency is fixed, a shorter

structuring element can be used to reduce the distortion of the waveform, so

B1 = (0, 1, 5, 1, 0). B2 is chosen to be a line segment of zero value and the

same length as B1, so B2 = (0, 0, 0, 0, 0).

Using the proposed structuring element pair, noise can be suppressed while

reducing the smoothing of the significant peaks and valleys in the ECG signal,

which are essential to subsequent reliable detection of the characteristic waves

of the input signal.

3.2 Implementation

Without a doubt, this morphological filtering technique has been designed to

work offline. According to the definition of the morphology operators, we need

all the input data to do the first erosion operation and this is impossible to

perform in a realtime embedded platform. What is worse is that the different

morphology operations are compound: the second dilation operation needs the

result of the previous erosion so we need to keep track of a big amount of data

in memory to get this technique working.

However, our implementation uses a fixed low amount of memory and sup-

ports the baseline wander removal and the noise suppression operations pro-

vided by this technique. We use several circular buffers to operate and to

store the partial results needed in each morphology operation and the final

implementation has been optimized to reduce the execution time due to an

CHAPTER 3. MORPHOLOGICAL FILTERING 29

improvement in the use of buffer indexes and peaks/pits comparison analysis,

as will be exposed later.

All the buffers used in this implementation are circular buffers made of 16-

bits integers, the basic datatype in which the MSP430 platform operates. The

calculation of fb = fo ◦Bo •Bc, the detected baseline drift, is made through a

sequence of erosion and dilation operations. The first operation, f1 = fo⊖Bo is

an erosion operation that uses the input signal fo and the zero value structuring

element Bo. According to the definition of this technique, Bo is 50 elements

long. If we pay attention to what the erosion operation means, each sample

f(n) in the input dataset in which n = {M−1
2

, . . . , N − M+1
2

} is going to be

used in an operation where to this sample will be subtracted each element

of Bo. The minimum value obtained in all the subtractions will be stored in

(f ⊖ Bo)(n). For n = {0, . . . , M−1
2

− 1} there is no definition for (f ⊖ Bo)(n)

so we use (f ⊖ Bo)(n) = f(n). And, since it is a realtime implementation, we

do not know how long the input data will be, so there is no definition for N .

Representation of the erosion operation

Thanks to the fact that the structuring element Bo is an horizontal line

segment of zero value, the first erosion operation can be implemented as a

simple minimum search in 50 elements, the length of Bo. Hence, the first

circular buffer we use to support the erosion operation is 50 elements long. In

this buffer, each new input sample is hosted in a position. When the buffer is

completely filled for the first time, each new input sample will overwrite the

sample stored 50 samples before, since it is a circular buffer. To implement the

erosion operation we use an index in the array which points to the minimum

value available in the buffer. Obviously, there is another index which points

to the latest position used in the buffer so that its circular scheme can work.

The first 50 input data samples are only used to fill this circular buffer.

When a new sample is received in this initialization period, its value is com-

pared to the previous minimum value received and stored in the buffer. In case

CHAPTER 3. MORPHOLOGICAL FILTERING 30

of being lower or equal to the previous minimum, the correspondent index is

updated and it is ready to receive a new sample. The idea of updating the

index when the new value is equal to the previous minimum is made to keep

the minimum index alive as much as possible. Since it is a circular buffer, it

is better to have all the indexes used as updated as possible and pointing to

the latest minimum, although equal to the previous one, because of the fact

that it reduces the chances of those indexes to be disabled by an overwritting

operation in the position they are pointing.

While the circular buffer is filling, the result of the erosion operation is the

same value received as input. Once the buffer is filled the operation is different.

Before storing the new input sample, we check whether it is going to overwrite

the previous minimum found in the buffer. If it happens but the new value is

equal or even lower than the previous minimum, there is no action to take: the

minimum index will stay pointing to the current position and the operation

will work properly. If the new value is higher than the previous minimum and

it is going to overwrite it, we need to find the new minimum in the buffer.

This is made by storing the new input sample in the buffer and then linear

searching completely for a new minimum.

If the new sample is not going to overwrite the previous minimum -minimum

index 6= current position-, we have to check whether its value is lower or equal

to the previous minimum. If it is, the minimum index is updated to point at

the current position. Otherwise, no change is made to any index. There are

several approaches to the use of a circular buffer but we use this implementa-

tion because it provides a low number of indexes changes and comparisons.

However, this implementation has a flaw in terms of efficiency and compu-

tation cost. As explained, once we check a new input sample overwrites the

previous minimum value, a linear search is made in the circular buffer. This

buffer is 50 elements long so such a linear search is likely to be avoidable. The

amount of linear searches made in the circular buffer depends squarely on the

shape of the input signal. It could be possible to find an input dataset in which

the variation of its values would not trigger enough linear searches to consider

any solution to avoid them. However, we are working with ECG signals and,

as explained above, a structuring element of only 50 elements in length. When

a steep slope is found in the ECG signal and, after that, a period of no vari-

ation, it could be easy to suffer from a minimum overwrite that would trigger

a linear search.

One solution to avoid the linear search would be the use of a second index to

the minimum value but this introduces more comparisons and if sentences that

CHAPTER 3. MORPHOLOGICAL FILTERING 31

makes computation slower. So we had to analyze how many linear searches

were made and whether using a second index was worthy. For test purposes,

we have been using several ECG signals of 225000 samples -recordings of 15

minutes. Without the use of a second pointer, for a reference input signal,

25983 linear searches were made in this first erosion operation, which corre-

sponds to the 11,55% of the input samples, so we decided to use a second index

to point at the first lower or equal minimum value in the buffer.

This solution changes the behaviour of the implementation of the operation

and increases the amount of comparisons. The second pointer can be disabled

by storing the value −1. Now, in the initialization period, if the new input

sample is not lower or equal to the previous minimum found, we have to check

whether it is lower or equal to the value pointed by the second index. As

before, updating this pointer in case of the new sample to be equal to the

value pointed makes this index to remain alive as long as possible so that the

final number of linear searches is reduced.

When the circular buffer is filled, the operation with two indexes is more

complex: if the new sample is going to overwrite the minimum in the buffer,

we check whether it is lower or equal to that value. If it is, there is no change

to make and the buffer is ready. Otherwise, we pay attention to the second

index. If this second index is −1, we have no other solution to do than a linear

search to update the minimum and the second minimum indexes. If the second

index is pointing to another value in the buffer and the new input sample is

not lower or equal to that value, we make the minimum index point at that

value in the buffer and disable the second index.

If the new sample does not overwrite the position of the minimum value

but it is lower or equal to this minimum previously found, the minimum index

points at the current position and the second minimum index points at the

previous minimum position. If the new sample is going to overwrite the value in

the position pointed by the second minimum pointer, we disable this pointer

in case of the new value to be greater than the previous second minimum.

Otherwise, the second minimum pointer is still valid. Finally, if this second

minimum index is not disabled and the new input sample is lower or equal to

the value pointed by it, we change the index to point at the current position,

to make the second pointer keep valid.

Once implemented and tested that both indexes works properly, for the

same test input signal as before, only 12536 linear searches were performed,

which corresponds to the 5,57% of the input samples and it means a reduction

of 13447 searches thanks to the use of two indexes instead of one. We have

CHAPTER 3. MORPHOLOGICAL FILTERING 32

detected that linear searches were triggered by the change in the shape of the

input signal after a steep downslope, specifically that one in the QRS complex.

After the operations associated to a new sample in this first circular buffer

are performed, the result of the erosion operation is always the value in the

position pointed by the minimum index. While the buffer is receiving and

processing new input samples, it always keep track of the minimum value in

the 50 last samples, which corresponds to the (f⊖Bo)(n) erosion operation. By

copying the value pointed by the minimum index to wherever it may be useful,

the erosion operation is valid and efficient in terms of memory consumption

-only a buffer of 50 elements is needed- and computation -only 5,57% of the

values of the test input signal triggered a linear search.

To resume the operation within the circular buffer B, the minimum index

min, the second minimum index secmin and the new position to be written

cur, here is a brief description in pseudocode:

if cur == min then

if newSample > B[min] then

if secmin == -1 then

perform a linear search

else if newSample > B[secmin] then

min = secmin

secmin = -1

end if

end if

end if

else if newSample <= B[min] then

secmin = min

min = cur

else if cur = secmin and newSample > B[secmin] then

secmin = -1

else if secmin != -1 and newSample <= B[secmin] then

secmin = cur

end if

The next operation to be performed for the technique to work is the dilation

operation which corresponds to the first opening with the input signal and

the structuring element. This dilation operation takes as input the result of

the previous erosion operation and uses the same structuring element, Bo. As

CHAPTER 3. MORPHOLOGICAL FILTERING 33

it is a zero value horizontal line, this operation is similar to what has been

explained before. The dilation operation for a new input sample means to add

samples in the input to all the elements in the structuring array and return

the greatest value obtained. As before, we need another circular buffer of 50

elements, corresponding to the length of the structuring element Bo.

Since there is no definition for the result of the first values of the input

signal when n < M−1
2

, this buffer is initialized with the input data until its

half is reached. Once it is half full, it will have to wait for the first values of

the result of the first erosion operation: at first, we must fill the first circular

buffer and, then, we can fill this second circular buffer with the result of the

first one. The dilation operation is based on sums and a search for a maximum

element, so here it is needed to keep two indexes to the maximum value and

the second maximum value in the buffer. The behaviour of these indexes are

equal to those in the first buffer except for the maximum value they point at.

While its initial filling is made, we pay attention to the new values to keep

track of where the maximum values are stored.

In this buffer, the need of a second index for pointing at the maximum

value was bigger than in the previous buffer. In the first implementation we

did, without the use of a second pointer, for the same test input of 225000

samples, 77507 linear searches were made, corresponding to a 34,45% of the

input data. Such an amount of searches justifies the additional comparison

process by the use of a second pointer. As a result of this improvement, only

10255 linear searches were made, corresponding to a 4,56% of the input data.

It is truly significant that for an amount of searches greater than those which

were triggered in the previous buffer, the use of a second pointer reduces even

more the final amount. This is explained according to the shape of the data

provided as input in this dilation operation. At first, more linear searches are

made but, with a second index, we get an greater reduction because of the

lower number of invalidations of this second index.

This buffer cannot return any result until it is completely full. The previous

circular buffer had a specific initialization process which granted that after 50

input samples it could be possible to get results from it. However, to get this

dilation buffer working we have to wait the first buffer to fill and then this

second buffer. 75 input samples are needed to initialize the first buffer: 25 of

those 75 are going to initialize also this dilation buffer, another 25 elements for

filling the first erosion buffer and then another 25 elements to fill this dilation

buffer. These initialization processes make the technique unable to work in

real time for the initial values, since the circular buffers are filling. As will

be explained later, once all the buffers are filled the implementation provides

CHAPTER 3. MORPHOLOGICAL FILTERING 34

always a output sample for each input one.

The first opening operation, compound by an erosion and a dilation, is

already implemented following the previous instructions. At this point, when

the dilation buffer is filled, the value in the position pointed by the maximum

index is the result of the dilation operation and, therefore, of the opening

operation fo ◦ Bo. The next operation to be performed is a closing operation,

compound by a dilation and an erosion, that uses as input the result of the

previous opening operation and the structuring element Bc. After this closing

operation we will get the baseline drift fb to be subtracted from the input

signal.

This closing operation uses Bc, which is a zero value horizontal line with

75 elements length and is compound by a dilation operation and an erosion

operation which receives the result of the previous dilation. As before, we use a

circular buffer to store the result of the previous dilation operation to perform

this new first dilation. It is going to be 75 elements long as the structuring

element. To initialize this buffer, the first 25 samples are taken from the input

signal, since there is no definition for them in the morphological operators.

For this buffer to keep filling, it has to wait until the two previous buffers

are filled. Our implementation uses a control variable to check whether the

previous dilation buffer is filled and, then, start copying its result data to this

new dilation buffer. While it receives the first raw input data it keeps track of

the values to keep the index to the maximum value stored updated.

When a new data sample is received, the procedure is equal to that in

the previous buffers: check whether the new sample is going to overwrite a

value pointed by any index, check whether the new value is greater than those

maxima pointed and store the new sample. According to our tests, the dilation

operation triggers more linear searches than the erosion operation. In this

buffer, using the input signal of 225000 samples, 67492 linear searches were

made in the implementation with an index, which corresponds to a 30% of the

input data. However, by using a second index, the amount of linear searches is

reduced incredibly to only 3419, a 1,52% of the input data. This reduction is

explained by several factors. Firstly, the signal this operation receives as input

has been previously processed by an opening operation so its shape is not as

rich as it was at raw input. Secondly, the structuring element, Bc is 50% longer

than the element, Bo used in the previous opening operation, which makes less

possible to suffer from a index overwriting.

This dilation operation can start returning output samples when this dila-

tion circular buffer is completely filled. Then, the value in the position pointed

CHAPTER 3. MORPHOLOGICAL FILTERING 35

by the maximum index is the result of the dilation operation. The baseline

drift computation finishes with the last erosion operation, which also completes

the closing operation with the Bc structuring element. This last operation is

implemented by a new circular buffer whose length is 75 elements, equal to

the length of the structuring element used.

The initialization of this buffer is more complex than the process followed

with the previous buffers. Once more, the first 25 elements of the input dataset

are stored directly at the beginning of this buffer. The previous dilation buffer

had to wait until the last buffer of the opening operation was completely filled.

This last erosion buffer starts receiving values from that last buffer of the

opening operation, since there are values before the half of the previous buffer

that are going to be copied directly. For a better understanding, pay attention

to the following image:

Scheme of the use of circular buffers for the implementation of the opening

and closing operations and their initialization process

This buffer allows to perform a erosion operation. Since the structuring ele-

ment Bc is a zero value segment, there is no need to perform any calculation

and the behaviour of this buffer is similar to the previous one. The erosion

operation needs the minimum element in the array to be returned as a re-

sult. In the implementation without double index, for the test input signal

of 225000 samples, 34416 linear searches were performed, corresponding to a

15,3% of the input dataset. By using a second minimum index, the number

of linear searches is reduced to 3062, corresponding to a 1,36% of the input

signal length. The reasons for this huge reduction are the same as before: the

structuring element is longer, so the circular buffer is longer. This means the

CHAPTER 3. MORPHOLOGICAL FILTERING 36

chance of a index disabling are lower and, thus, the use of a second index is

completely justified.

When this last circular buffer is completely filled, we are able to get values

for the baseline drift estimate fb. After processing a new input sample, per-

forming the opening and closing operations, the value in the position pointed

by the minimum index of this last erosion buffer is the new sample for the

baseline drift. This value has to be subtracted to the input signal to get the

filtered input signal without baseline wander. However, we have to remind

that there is a gap between the input signal and the result of the filter be-

cause of the initialization process of the different buffers. While each buffer

is being filled, no outcome is returned so the gap is increasing until all the

buffers are full. To solve this, it is needed another buffer in which the input

signal is stored. This new buffer helps to overcome the samples gap between

the input and the output. It is also a circular buffer with two indexes: one

to control which position is going to be written next with a new input sample

and another index to control which position has the value next to be used for

the final output.

For each output value returned from the circular buffer for the last ero-

sion operation, is has to be subtracted to the correspondent input data sample

which is store in this recently described buffer. When the subtraction is per-

formed, we have the baseline correction of the input signal fbc = f − fb.

The next step is to suppress noise in the signal. This is done by a concurrent

closing and opening operation based on the use of two different structuring

elements. These elements are five positions long so, as we have been doing,

we will use a buffer of equal length. The first concurrent operation to be

performed is an erosion and a dilation using B1 = (0, 1, 5, 1, 0). The approach

to this calculation is different to what has been carried out before.

At first, we use a circular buffer of five elements to store the output of

the baseline correction fbc. This buffer is only five elements long because it is

the length of the structuring element B1. To carry out the first erosion and

dilation, we use a static array of elements to store the offset of the B1 for its

use with the circular buffer. Since we can find the first element in order in

the five elements buffer stored in any of its positions, we have to control the

structuring element to match with the right element in the buffer. This is done

by unfolding all the combinations of B1, according to its starting point, in a

bigger array of 20 elements: (0, 1, 5, 1, 0, 0, 0, 1, 5, 1, ...).

Then, to calculate the first erosion and dilation operation we have only

to add -dilation- or subtract -erosion- each value in the structuring element

CHAPTER 3. MORPHOLOGICAL FILTERING 37

to/from each value in the circular buffer. In case of the erosion operation,

we will use a variable to store the minimum value obtained as a subtraction

result and, likewise, we will use another variable to store the maximum value

obtained as an add result. By accessing to these values once the buffer has

been covered, we get the result of this new erosion and dilation operation.

Matching of the circular buffer and the correspondent instance of the B1

structuring element in its array

We need another variable to control in which position of the structuring

element array we have to start to calculate. When a new value is stored in

the circular buffer, we have to get which is the maximum and the minimum

value by the calculation with the structuring element. This is done by going

through the circular buffer and add or subtract each of its values with the

correspondent value of the B1 array. We use a chain of comparisons to get the

final maximum and minimum result and, to optimize the amount of changes in

each control variable, an analysis was made to know in which relative positions

were the maximum and minimum found.

The easiest implementation of this erosion and dilation operations would

be to start by the first element in B1 and calculate the result with the corre-

spondent first element in the circular buffer. Then, process the second and so

on. Since we are interested in an efficient implementation, we performed an

analysis to check whether the maximum and the minimum in each operation

can be found more probably in a fixed position, so that we could reduce the

amount of comparison and changes of variables. Just by going through the

array in a linear sequence, we cannot be sure of whether we are following the

best path in the comparison chain.

The first implementation used a linear sequence to calculate with the struc-

turing element by buffer[0] + B1[j], buffer[1] + B1[j+1], At first,

one solution to reduce the amount of changes of the value of the variables

CHAPTER 3. MORPHOLOGICAL FILTERING 38

would be to analyze in which positions the maximum and the minimum are

found more often. It, obviously, should depend on the value of j, the vari-

able which controls in which instance of the structuring element B1 we are

working on in the buffer B1. However, performing such an analysis for each

instance and implementing this variable access method would lead to an extra

cost of addressing, since the access to the array B1 would depend, for opti-

mization purposes, on another static array in which the best access chain for

each instance would be stored: buffer[0] + B1[opt[j]]. This optimization

would be nonsense since the extra addressing operation would lead to an extra

computation and memory access cost.

The solution to avoid this extra cost while trying to perform such an opti-

mization is not to consider in which instance of the B1 we are working in the

array B1. At first, we could consider that the maximum and minimum values

are stored in whatever position so that it might be difficult to find a pattern

for their locations. Thanks to the use of control variables, we discovered that,

for the input test of 225000 samples, 295232 changes in the variable for the

dilation operation were made and 271059 changes took place in the variable

for the erosion dilation. This amount of changes corresponds to 1,31 changes

per sample in the dilation and 1,16 changes per sample in the erosion dilation.

To try to reduce this figures, we performed an analysis using all the signals

in the QT Database. The structuring element has five elements so we had

only to check in which of these positions the maximum and the minimum were

found while doing the calculation. Counting the changes for all the signals, for

the sequence of accesses we tested, the sequence (3, 4, 0, 1, 2) resulted in

57596223 changes for the variable of the dilation operation and the sequence

(2, 3, 4, 0, 1) gave as a result 57262531 changes for the variable of the

erosion operation. We did not test all the combinations available since the

first element of the sequence can be used to prune the search space for the

best combination.

The best access sequence for the dilation operation is (0, 2, 4, 1, 3),

which reduces the amount of changes to 53035250 and, for the erosion oper-

ation, the best sequence is (0, 2, 3, 1, 4), which reduces the amount of

changes for all the input dataset to 53075361. Applying these sequences to the

implementation and using the same input test, the result was that only 261362

changes were made -a 11,47% reduction and only 1,16 changes per sample- in

the dilation operation. In the erosion operation, only 254809 changes took

place -a 6% reduction for 1,13 changes per sample.

This optimization takes no extra computation cost since the implementa-

CHAPTER 3. MORPHOLOGICAL FILTERING 39

tion has to go through the hole array for the structuring element. Although

the number of comparisons cannot be reduced, because we have to compare

all the values, the number of changes in the variables of the morphological

operations is reduced, leading to a better performance.

The code for the implementation of these concurrent erosion and dilation

operations is needed in three different parts of the general code. The structur-

ing element is only 5 elements long, so it fills completely in the first five input

samples. While the first buffer for the erosion operation at the beginning of

the implementation is filling, those values has to be stored in the first buffer

for noise suppression since its length is of only five elements. Therefore, the

noise suppression code starts returning results before the baseline correction

is done.

While the buffer for the second erosion in the baseline correction is filling,

those samples have to be also processed by the noise suppression part, since

they produce no output for the baseline correction but are needed in this

filtering process. Finally, once all the buffers are full, the code for this first

concurrent operation remains needed to produce a right result.

These first erosion and dilation returns their result by the value of the

variable whose changes we have tried to reduce. When the calculation is done

by going through the array and getting the maximum and the minimum values,

the associated variables store the result of those operations.

The second concurrent operation corresponding to the final erosion and

dilation in the concurrent opening and closing is based on the use of the struc-

turing element B2. This stands for the completion of the noise suppression:

we have already explained how to perform fbc ⊕ B1 and fbc ⊖ B1. The next

step is to use the structuring element B2 to perform a new pair of operations.

B2 is a zero value horizontal line with a length of five elements. The steps to

follow for the implementation of this new concurrent operation are similar to

those taken for the baseline removal part.

Variable Changes w/o opt. Changes w/ opt. Reduction

dilation (max.) 295232 (1,31c/s) 261362 (1,16c/s) 11,47%

erosion (min.) 271059 (1,2c/s) 254809 (1,13c/s) 6%

Table 3.1: Changes made in the variable for each operation and changes per

sample without and with optimization.

We use a circular buffer of five elements to support these operations and,

since the structuring element has a constant zero value, we do not have to go

through the buffer as we had to do with the use of B1. We can use the same

CHAPTER 3. MORPHOLOGICAL FILTERING 40

approach as before: control with an index were the maximum and the minimum

value is stored. These new circular buffers have to be properly initialized by

waiting until the previous buffers are full and start to give output. The code

for this new circular buffers is next to the code of the previous ones, since these

buffers depend on the output of those and, therefore, each sample processed by

the previous compound operation entails a new operation in these new buffers.

One buffer is devoted to the erosion operation and the other to the dilation

operation. Since these buffers are only five elements long one approach to its

implementation would be to go through them to get the minimum or maximum

value as output. However, this is more expensive in terms of computation than

the use of an index to the appropriate value and check whether the new value

to be stored changes the maximum or minimum value index. It would be also

easy to think that there is no need to use a second index since the search in an

array of five elements is rapid. The first implementation gave as a result that,

for the dilation operation, 71090 linear searches were made, corresponding to

the 31,6% of the input test data. In the erosion operation, 97650 linear searches

were performed, which equals to a 43,4% of the input data.

This huge number of linear searches triggered by the overwriting of the

value pointed by the index is explained by the length of the structuring ele-

ment. As happened before, the shape of the input signal to these operations

determines how many searches we can avoid by the use of a second pointer. In

these operations, by using a second maximum and minimum index, the num-

ber of linear searches were reduced to 31844 -14,15% of the input data- in the

dilation operation and to 45061 -20,03%- in the erosion operation. This last

figure still shows a great number of linear searches. We tried to reduce this

number by inserting the use of a third index but the extra computation cost

was not justified by the slight reduction achieved.

Circular buffer Num. lin. searches Num. srch. w/ 2nd index Reduction

erosion 1 25983 (11,55%) 12536 (5,57%) 51,75%

dilation 1 77507 (34,45%) 10255 (4,56%) 86,77%

dilation 2 67492 (30%) 3419 (1,52%) 94,93%

erosion 2 34416 (15,3%) 3062 (1,36%) 91,1%

dilation 4 71090 (31,6%) 31844 (14,15%) 55,21%

erosion 4 97650 (43,4%) 45061 (20,03%) 53,85%

Table 3.2: Reduction of linear searches in the circular buffers due to the use

of a second index for a test input of 225000 samples.

CHAPTER 3. MORPHOLOGICAL FILTERING 41

Baseline correction and noise suppression output (centered, in blue), baseline

correction output (in black, at the top) and input signal and baseline

estimation (below, in red and black).

Once the concurrent operations are performed, by accessing to the value

pointed by the maximum and the minimum indexes in the last circular buffers

we get the result of fbc ⊕B1 ⊖B2 and fbc ⊖B1 ⊕B2. To get the output of the

filter after the noise suppression part, we have only to add those values and

average them: f = 1
2
(fbc ⊕ B1 ⊖ B2 + fbc ⊖ B1 ⊕ B2). The result of the each

part of this filter is shown in the previous image.

CHAPTER 3. MORPHOLOGICAL FILTERING 42

Scheme of the circular buffers and the operations performed

In contrast to the cubic spline technique, this morphological filtering pro-

vides more stability. There is no estimator to use and, in fact, all the technique

works the same for any point in any characteristic wave of the ECG signal.

We have to keep in mind that the use of morphological operators are based on

structuring elements chosen according to the shape of the signal we are trying

to process. Thanks to the fact that the structuring elements Bo, Bc and B2

are a horizontal line of zero value, the implementation can be done efficiently

with no extra cost for calculation with each element in those structuring ar-

rays. Then, the main goal is to reduce the amount of linear searches. This

technique is not artifact dependant since no artifact in the input signal can

trigger any special condition in the filtering process.

Chapter 4

Results

This chapter presents the results for the validation process of these techniques.

During the implementation process, all the validation tests were performed in

a x86 platform without any constraint in terms of memory consumption and

computation cost. The implementation was validated using the Physionet QT

database (QTDB) [2] and the MIT-BIH Noise stress test database.

Firstly, both implementations were tested by visualizing its results in a

Matlab scenario to test at first glance whether the implementation was work-

ing properly. For testing the morphological filtering technique, a previous

offline implementation was done and then, while each morphological operation

was implemented for realtime, its result were validating by the use of the of-

fline implementation. This allowed us to work in parallel with this filtering.

While the realtime implementation was being tested, others could work in a

delineation algorithm.

As shown in the images of the previous chapter, several lines were added to

the cubic spline implementation to check whether the knot locator was working

as expected. The first steps taken in the implementation of this technique were,

obviously, to test and to improve how the knot locator was fixing to the beats

in the input signal. We found we needed an improvement to the locator due

to the presence of some overlocation failures, as explained before. Once the

locator was working properly, it was needed to implement the cubic spline

technique.

The first implementation used floating point operations but, since the tar-

get embedded platform does not support this kind of operations, it was needed

an adaptation to the use of integers. We found then needed to arithmetically

left shift the cubic spline variables to keep it working since the integer imple-

mentation was not accurate enough. Then, the optimization process had the

43

CHAPTER 4. RESULTS 44

goal to improve the efficiency of the implementation but we could only try to

optimize the calculation of the cubic spline variables, using 32-bits operations

instead of 16-bits in the embedded platform.

Since the cubic spline implementation uses dynamic memory to store the

information and samples of three consecutive beats, we had to test whether

there was any memory leak. The implementation uses several malloc() and

free() instructions to work. In an embedded platform, the amount of memory

is considerably small compared to that in a x86 platform and memory leaks

should not take place. To check whether there was any memory leak or memory

access failure, we used Valgrind [6]. It is an instrumentation framework for

building dynamic analysis tools. It is a pack of six tools, from which we used

memcheck. For a test signal of 225000 samples, the report of valgrind is

==3180== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 13 from 1)

==3180== malloc/free: in use at exit: 0 bytes in 0 blocks.

==3180== malloc/free: 4,494 allocs, 4,494 frees,

1,587,466 bytes allocated.

==3180== For counts of detected errors, rerun with: -v

==3180== All heap blocks were freed -- no leaks are possible.

This report shows that no memory leaks took place and that 4494 memory

blocks were needed for the removal of the baseline wander in that test.

The morphological filtering was at first implemented without the use of any

optimization. Circular buffers had only one index to the correspondent maxi-

mum or minimum value. The implementation process took us more time than

expected so we had to delay the optimizations until the hole first prototype was

validated. Then, we performed some profiling tests to know how many linear

searches were performed in each circular buffer and how many changes were

made in some variables. This allowed us to carry out the changes explained in

the previous chapter to get a more efficient implementation of that technique.

For a test signal of 225000 samples, the first implementation took 5,341sec

to filter the hole input signal. Since the input signal is a recording of 15

minutes, this means that, on a x86 platform, all the samples were filtered in

a 0,593% of the total time they represent. However, once the optimizations

were made, the filter only took 4,801sec to filter the input signal, which means

an improvement of 10,11% of the execution time and only 0,533% of the time

represented by the input signal. The cubic spline implementation is more

efficient in terms of execution time on a x86 platform. For the same input

CHAPTER 4. RESULTS 45

signal, only 3,373sec were needed to filter the hole ECG, which corresponds

with a 0,374% of the time the signal represents and an improvement of 29,74%

of the execution time of the morphological filtering.

Despite these figures, we have to keep in mind that the morphological fil-

tering carries out a noise suppression and that the cubic spline implementation

is too artifact dependent and uses dynamic memory allocation. All of these

figures have been obtained by a simulation on a x86 platform.

To validate the partial results obtained by the morphological implementa-

tion and the knot locator and the result of the cubic spline technique we have

used several ECG signals from the Physionet QT database [2]. This database

is designed to provide a set of signals to test the performance of several algo-

rithms devoted to measure the width of characteristic waves in the ECG in

order to detect abnormal electrical conduction in the heart, due to myocardial

damage, and to stratify patients at risk of cardiac arrhythmias. The most

important interval for such measurements is the QT segment. Several algo-

rithms have been published to detect and measure that interval but all the

studies lack of standardized databases containing a sufficiently large number

of carefully annotated heartbeats with manually-made measurements of wave-

form boundaries. This reflects the tremendous effort required for a clinician

to manually annotate a statistically significant set of QRST complexes. The

QT database stands for addressing this problem by constructing an annotated

reference database which includes a wide variety of ECG morphologies and a

significant number of patient records.

The records were chosen primarily from among existing ECG databases,

including the MIT-BIH Arrhythmia database [5], also used in this project. The

QT database provides the same signals but with added reference annotations

marking the location of waveform boundaries. The database contains a total of

105 fifteen-minute excerpts of two channel ECGs. Within each record, between

30 and 100 representative beats were manually annotated by cardiologists, who

identified the beginning, peak and end of the P-wave, the beginning and end

of the QRS-complex, and the peak and end of the T-wave. All records were

sampled at 250Hz.

The records are provided in the MIT-BIH database format. Each record

includes a signal file .dat, a header file .hea, describing the format of the signal

file and several annotation files: .atr file contains the original annotations from

the source database, .ari file contains QRS annotations obtained automatically

by Aristotle [7], a two lead ECG analysis program, and .man file contain

the manual annotations.

CHAPTER 4. RESULTS 46

To validate the results of the filtering process, we use the sel302 ECG

from the QT database as a reference because it is very well defined without

noise. There are several measures to test how a signal is conditioned by any

operation on it. One way to test the techniques here presented could be to use

a clean signal, add baseline wander and noise to it, filter it, and then calculate

the average root-mean square error -RMS- which is a common measure to

quantify the error between the original signal x(n) and the filtered x̃(n) for

n = {0, 1, . . . , N}.

ρRMS =

√

√

√

√

1

N

N−1
∑

n=0

(x(n) − x̃(n))2

However, this is not a valid measurement for the baseline wander removal,

since this process distorts the signal as expected. As can be seen in the previous

images for the baseline wander removal, this process means a distortion of the

input signal to get an isoelectric line of zero value. All the filtering processes

distorts the signal and, in some cases, flattens their peaks. The baseline wander

removal process means that all the characteristic waves remains in the same

time index but it could be possible for a signal to be reduced the amplitude of

its peaks. This makes the difference between the original signal x(n) and the

filtered one x̃(n) increase and, therefore, the RMS value is not acceptable. On

the other hand, the baseline wander estimation is not a straight line between

beats. For the cubic spline technique, it is obvious that some variation could be

inserted in the filtered signal because of the ordinal value of the knot associated

to a beat. For the morphological filtering, as can be seen, even when the

beat seems to be centred without baseline, the estimation makes the signal

move after the filtering process and, therefore, more error is introduced in the

calculation of RMS.

To measure the results of these filtering techniques, we are going to use a

wavelet based ECG delineation algorithm by Nicholas Boichat [10]. This de-

lineation algorithm is based on the wavelet transform which was first presented

in [18] and developed in [19]. The delineation process takes advantage of the

fact that the ECG is roughly a periodic signal, and each beat is composed

of a QRS complex, preceded by a P wave, and followed by a T wave. Each

of these waves has a different frequency content -the QRS complex is made

by relatively high frequencies, while the P and T waves are composed of low

frequencies.

The ECG signal can be well decomposed using a dyadic discrete wavelet

transform which provide us with outputs called scales. Each scale matches

CHAPTER 4. RESULTS 47

different frequency bands of the original ECG signal, which allows us to per-

form a multi-scale analysis to detect the ECG waves. Once the outputs of

the discrete wavelet transform are computed, it is needed to detect the main

peak of the QRS complex, then perform the delineation of the QRS complex,

consisting of detecting its secondary peaks, and find the onset and end of the

complex.

ECG beat with its characteristic waves

By paying attention to the manual annotations provided in the QT Database,

we can validate the result of the delineation algorithm. This algorithm pro-

vides as a result the detection of the characteristic waves in the ECG signal so

that we can compare this automatic annotation with the manual annotation

provided for each signal.

A manual annotation is considered as related to an automatic one if their

time interval is smaller than 320ms. This pair of annotations is marked as a

true positive TP . Each manual annotation that has no corresponding auto-

matic annotation is marked as a false negative FN and each automatic anno-

tation without a manual annotation is marked as a false positive FP .

Using these definitions, the sensitivity Se of the delineation and the positive

predictivity P+ is defined as follows:

Se =
TP

TP + FN

CHAPTER 4. RESULTS 48

P+ =
TP

TP + FP

However, since the QT database is manually annotated, it is possible to find

an automatic annotation when there is no manual one. This absence of any

annotation can mean either the wave is not present -the automatic detection

counts as a false positive- or that the cardiologist could not annotate the point

with confidence. Therefore, an automatic detection does not necessarily mean

a false positive. Because of this, the tables will show the value of P+
min, which

has to be considered as a lower bound of the real value of P+.

The great implementation of the delineation algorithm by Nicholas Boichat

takes advantage of the fact that the QT database provides recordings from

two leads for each ECG, and the manual annotations have been performed

by cardiologists having a look at both leads. Therefore, for a best comparison

between the automatic and manual delineation, the algorithm was improved to

run on both leads and then, for each manual annotation, the lead introducing

the least error is considered. This is part of the ongoing work to get a multi-

lead delineation algorithm. These filtering techniques are designed to serve

as an input filter for that delineation implementation. That is the reason

to use the wavelet delineation algorithm as a test for the validation of the

implementations here presented.

To validate the results provided by these filtering techniques, we will get

the delineation validation of the sel302 signal from the QT Database. Then,

we will add noise to this signal, filter it and then provide the filtered signal

as input for the delineation algorithm. By paying attention to the results of

the delineation validation, we will be able to check how the filtering process

affects the delineation algorithm.

The MIT-BIH Noise stress test database [5] includes 12 half-hour ECG

recordings and 3 half-hour recordings of noise typical in ambulatory ECG

recordings. The noise recording were made using physically active volunteers

and standard ECG recorders, leads and electrodes. These electrodes were

placed on the limbs in positions in which the subjects’ ECGs were not visible.

The three noise records were then assembled from the recordings by selecting

intervals that cointained predominantly baseline wander -records bw-, muscle

artefact -ma- and electrode motion artefact -em-.

To prepare the test workbench, we use the PhysioToolkit Software [9], a

large library of software for physiologic signal processing and analysis. Using

nst, we introduce noise and baseline wander in the input test signal. In the

MIT-BIH Noise stress database several noise recordings are provided. The first

CHAPTER 4. RESULTS 49

analysis to perform is baseline wander removal, so we used the baseline wander

recording and nst to modify the test signal. nst works as follows, by receiving

a input signal, a reference to a noise recording, the name for the output signal

and then the SNR value we desire.

nst -i <signal> bw -o <outputSignal> -s <SNR>

For our tests, we have used several SNR values to test the performance of

these techniques. As will be shown, values 24, 18, 12, 6, 0, -6 for SNR show

different results of the filtering techniques regarding its response to the SNR

value. Thanks to this, we get six input ECG signals with different SNR value of

baseline wander. nst generates an output in which there is a five-minute noise-

free learning period, followed by two-minute periods of noisy and noise-free

signals alternately until the end of the clean record. The gains to be applied

during the noisy periods are determined by measuring the signal and noise

amplitudes. The manual annotations for the signal sel302 are available for

the samples between 151105 and 156072, which are in the second two minutes

noise period introduced by nst, so that we can use this signal to perform a

test in which the signal in that period will be affected by the baseline wander

injection and then filtered.

Result of baseline wander addition to signal sel302 using nst for each SNR

value.

CHAPTER 4. RESULTS 50

Once we have the input signals for all values of SNR we can proceed with the

validation test. At first, we need to get the delineation validation for the input

signal without any noise. Then, we will get the validation of the delineation

process for each filtered test signal. These validation results are provided by

measuring the sensitivity Se, the lower bound of positive predictivity P+
min and

the mean m of the error between the manual annotation and the automatic

annotation obtained by the delineation process in msec. For each point in the

delineation process it is also provided the standard deviation s of the errors.

The CSE working party [11] provides several two-standard deviation tol-

erances for the annotation of the characteristic waves in the ECG, which cor-

respond to measurement differences between cardiologists. The process to

evaluate whether the filtering process is valid is based on paying attention to

the result of the standard deviation obtained by the delineation algorithm and

checking whether it is in the boundaries defined by the CSE working party.

In the following tables, it is shown at first the delineation validation for the

input sel302 clean signal. Then, for each SNR, the same validation values are

provided to compare. The last row of each table shows the tolerance values

for the standard deviation s.

Param Pon Ppeak Pend QRSon QRSend Tpeak Tend

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

clean P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

signal m ± s (ms) −0.7 ± 8.2 8.0 ± 8.8 −6.9 ± 8.9 0.3 ± 5.5 17.7 ± 34.6 14.6 ± 5.1 4.4 ± 8.6

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

24dB m ± s (ms) −1.2 ± 6.1 11.1 ± 6.6 8.7 ± 4.7 3.7 ± 5.3 22.0 ± 35.3 18.6 ± 5.1 11.3 ± 7.4

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

18dB m ± s (ms) −1.9 ± 5.8 11.5 ± 6.6 10.0 ± 4.8 2.9 ± 5.5 22.0 ± 35.3 18.5 ± 5.1 11.2 ± 7.4

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 90.00 90.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

12dB m ± s (ms) −2.9 ± 7.4 12.8 ± 6.4 11.1 ± 5.3 2.7 ± 5.3 31.2 ± 54.1 18.2 ± 5.3 9.5 ± 7.8

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 80.00 80.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

6dB m ± s (ms) −4.9 ± 10.0 13.1 ± 6.4 10.1 ± 6.9 2.0 ± 6.1 46.5 ± 72.8 18.2 ± 4.8 8.7 ± 8.1

sel302 Se (%) 96.67 96.67 96.67 100.00 100.00 63.33 63.33

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0dB m ± s (ms) −7.2 ± 24.7 9.2 ± 24.2 3.3 ± 27.9 −0.8 ± 12.2 69.7 ± 84.3 18.1 ± 5.4 5.7 ± 8.9

sel302 Se (%) 93.33 93.33 93.33 100.00 100.00 40.00 40.00

SNR P+

min
(%) 70.00 70.00 70.00 66.67 66.67 92.31 92.31

-6dB m ± s (ms) −8.4 ± 41.4 −4.1 ± 41.1 −13.9 ± 45.6 −10.7 ± 34.3 88.1 ± 84.0 −10.0 ± 42.4 −22.0 ± 49.7

Tolerances for s 10.2 - 12.7 6.5 11.6 - 30.6

Table 4.1: Validation of the delineation of the signal sel302 with different baseline

wander SNR. Using morphological filtering -baseline wander & noise suppression.

The previous table shows the results for morphological filtering with base-

CHAPTER 4. RESULTS 51

line wander removal and noise suppression. Except for the QRSend standard

deviation values, all the results are good for SNR from 24dB to 6dB. For Pon,

this filtering increases the mean for any SNR value but it decreases the devia-

tion value with regard to that in the clean signal for the first SNR values. Pend

values are also acceptable in terms of standard deviation, although a mean

increase takes place too. The QRSon values for standard deviation are almost

the same as those obtained for the clean signal whereas the QRSend values are

worst. This can be explained by paying attention to the value obtained for the

clean signal, since it triples the tolerance bound. Finally, although the mean

error is higher than that for the clean signal results, all the deviation results

are acceptable for the Tend delineation.

The sensitivity and predictivity values remains almost the same and under

an acceptable limit until SNR = 0dB, which is a SNR value in which the input

signal is considerably distorted as shown in a previous image. The conclusion

for the validation results of the morphological filtering is that although it

increases the mean error between the manual and the automatic annotations

performed by the delineation algorithm, all the standard deviation values are

acceptable until the 0 dB level for SNR is reached. Sensitivity and predictivity

is not affected except for those values corresponding to the T wave.

Param Pon Ppeak Pend QRSon QRSend Tpeak Tend

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

clean P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

signal m ± s (ms) −0.7 ± 8.2 8.0 ± 8.8 −6.9 ± 8.9 0.3 ± 5.5 17.7 ± 34.6 14.6 ± 5.1 4.4 ± 8.6

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

24dB m ± s (ms) 0.1 ± 6.2 11.1 ± 6.6 8.7 ± 5.6 3.7 ± 5.3 21.2 ± 35.4 18.6 ± 5.1 10.6 ± 7.1

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

18dB m ± s (ms) −0.3 ± 6.3 12.3 ± 7.4 10.1 ± 5.9 3.3 ± 5.3 20.7 ± 35.4 18.3 ± 5.2 10.2 ± 7.7

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

12dB m ± s (ms) −1.2 ± 6.3 12.8 ± 7.5 10.9 ± 5.9 3.1 ± 5.3 19.6 ± 35.7 19.0 ± 5.0 9.5 ± 7.5

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 90.00 90.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

6dB m ± s (ms) −1.9 ± 6.9 13.3 ± 8.3 10.5 ± 7.9 0.1 ± 9.4 28.8 ± 53.6 18.8 ± 5.0 7.4 ± 8.6

sel302 Se (%) 96.67 96.67 96.67 100.00 100.00 70.00 70.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

0dB m ± s (ms) −3.7 ± 25.2 3.9 ± 28.3 0.6 ± 23.6 −10.3 ± 11.9 59.2 ± 80.5 19.0 ± 5.9 3.4 ± 8.8

sel302 Se (%) 86.67 86.67 86.67 100.00 100.00 40.00 40.00

SNR P+

min
(%) 83.87 83.87 83.87 73.17 71.43 100.00 100.00

-6dB m ± s (ms) −67.5 ± 52.1 −62.5 ± 57.1 −76.3 ± 60.0 −12.0 ± 27.5 78.5 ± 88.8 22.3 ± 26.3 −3.3 ± 26.2

Tolerances for s 10.2 - 12.7 6.5 11.6 - 30.6

Table 4.2: Validation of the delineation of the signal sel302 with different baseline

wander SNR. Using morphological filtering -only baseline wander removal.

CHAPTER 4. RESULTS 52

The results for only the baseline wander removal performed by the mor-

phological filtering are almost the same as those obtained by the hole filtering.

In this case, it is remarkable that the mean error does not increase as much as

does with the noise suppression part. The standard deviation of the error re-

mains lower than the value obtained by the hole filtering except for the QRSon

values at 6dB SNR. For the Pon point, this filtering increases the accuracy

of the delineation for SNR = 24dB and 18dB. Regarding the sensitivity and

predictivity values, this filtering obtains the same results as those for the clean

signal for SNR values from 24dB to 12dB and for the T wave, those values

are better than those obtained with the noise suppression part. However, the

results for the SNR values of 0dB and -6dB are better with noise suppression

since the signal is considerably distorted.

Param Pon Ppeak Pend QRSon QRSend Tpeak Tend

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

clean P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

signal m ± s (ms) −0.7 ± 8.2 8.0 ± 8.8 −6.9 ± 8.9 0.3 ± 5.5 17.7 ± 34.6 14.6 ± 5.1 4.4 ± 8.6

sel302 Se (%) 96.67 96.67 96.67 96.67 96.67 90.00 90.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

24dB m ± s (ms) 0.8 ± 6.0 11.9 ± 7.2 13.9 ± 5.7 2.6 ± 5.2 19.6 ± 36.4 18.7 ± 5.2 13.9 ± 7.3

sel302 Se (%) 93.33 93.33 93.33 96.67 96.67 90.00 90.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

18dB m ± s (ms) 0.7 ± 5.8 11.9 ± 7.4 13.6 ± 6.4 2.8 ± 5.2 19.6 ± 36.4 18.5 ± 5.3 13.3 ± 7.7

sel302 Se (%) 96.67 96.67 96.67 96.67 96.67 90.00 90.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

12dB m ± s (ms) −1.1 ± 11.4 12.0 ± 11.0 10.3 ± 14.1 2.9 ± 5.6 19.7 ± 36.4 19.0 ± 5.4 11.4 ± 8.6

sel302 Se (%) 93.33 93.33 93.33 96.67 96.67 70.00 70.00

SNR P+

min
(%) 82.35 82.35 82.35 72.50 72.50 95.45 95.45

6dB m ± s (ms) 1.7 ± 14.1 10.7 ± 14.2 6.4 ± 18.5 0.4 ± 8.4 29.9 ± 53.7 11.6 ± 24.1 3.4 ± 29.2

sel302 Se (%) 90.00 90.00 90.00 96.67 96.67 63.33 63.33

SNR P+

min
(%) 84.38 84.38 84.38 76.32 76.32 95.00 95.00

0dB m ± s (ms) 4.9 ± 25.9 9.3 ± 27.5 5.2 ± 22.9 −7.6 ± 18.5 51.7 ± 74.8 11.4 ± 47.8 −0.8 ± 62.4

sel302 Se (%) 70.00 70.00 70.00 83.33 90.00 43.33 46.67

SNR P+

min
(%) 84.00 84.00 84.00 75.76 81.82 92.86 93.33

-6dB m ± s (ms) −51.6 ± 86.5 −55.8 ± 76.8 −63.4 ± 72.5 −16.3 ± 46.3 59.3 ± 79.7 26.8 ± 48.7 17.1 ± 63.1

Tolerances for s 10.2 - 12.7 6.5 11.6 - 30.6

Table 4.3: Validation of the delineation of the signal sel302 with different baseline

wander SNR. Using cubic spline technique.

The results for the cubic spline technique are slightly worse than those ob-

tained with both tests with the morphological filtering. For the Pon parameter,

only SNR values of 24dB and 18dB result in a deviation within the tolerance

limits. For Pon and Pend only the results obtained with SNR = 24dB and 18dB

are acceptable, since for SNR = 12dB, the standard deviation exceeds the tol-

erance limit. For the QRSon values, the result of filtering the input signal with

6dB SNR has its standard deviation outside the tolerance bounds. As before,

the QRSend values triple the tolerance values and, for the Tend standard de-

CHAPTER 4. RESULTS 53

viation, the SNR = 6dB is next to the tolerance limit. Furthermore, there is

a decrease in the predictivity and sensitivity values related to the SNR value.

This is explained by the presence of several false positives and false negatives

in the automatic detection procedure.

The next step is to compare the results obtained for each filtering technique.

As follows, we will compare the standard deviation for each characteristic

point in the ECG according to each implementation, considering morphological

filtering with baseline wander removal and noise suppression and only the

baseline wander removal filter.

Ponset standard deviation for each SNR value and technique used.

The Ponset point offers good standard deviation values for SNR = 24dB

and 18dB with each implementation. However, the cubic spline technique be-

haves poorly from a SNR value of 12dB, exceeding the tolerance limit. The

morphological filtering with noise suppression results in worse standard devi-

ation than only removing baseline wander. Until the SNR value of 6dB, both

implementations of the morphological filtering result in an appropriate value

for the standard deviation.

CHAPTER 4. RESULTS 54

Pend standard deviation for each SNR value and technique used.

The standard deviation for the annotation of the Pend point is almost the

same for both morphological filtering implementations. However, the cubic

spline technique offers worse results since for SNR = 12dB, it exceeds the

tolerance limits. It is remarkable that for SNR values from 24dB to 12dB,

the morphological filtering results are almost the same for this point and only

increases slightly when injecting a SNR of 6dB.

The QRSon standard deviation result is almost the same for the three

implementations for a SNR value from 24dB to 12dB. For SNR = 6dB, the

morphological filtering with baseline wander only behaves slightly worse than

the cubic spline implementation whereas the complete morphological filtering

implementation results in acceptable deviation values.

CHAPTER 4. RESULTS 55

QRSonset standard deviation for each SNR value and technique used.

The QRSend point is not well delineated for any SNR value. This high

value for standard deviation means those points for all the input signal are

not well automatically delineated and, what is worse, the error between the

manual and the automatic annotation is not constant. However, it is useful

for us to state that the morphological filtering with baseline wander removal

and noise suppression results are not so good as they are with other character-

istic waves. Furthermore, the cubic spline and morphological filtering baseline

wander removal behaves almost the same until SNR = 0dB.

Finally, the standard deviation for the annotation of the Tend point is fine

using both implementations of the morphological filtering until a SNR value

of 0dB. However, the cubic spline technique results for SNR = 6dB are just

in the tolerance limit. Once more, both implementations of the morphological

filtering behaves the same until SNR = 0 dB, in which the input signal is

considerably distorted in comparison to the original one.

CHAPTER 4. RESULTS 56

QRSend standard deviation for each SNR value and technique used.

Tend standard deviation for each SNR value and technique used.

To test the noise suppression part of the morphological filtering we are

going to inject using nst muscle artefact noise in the signal sel302. This

corresponds to electromyographic noise, presented at the beginning of this

report. The muscle artifact noise recordings are also available in the MIT-

BIT noise stress database [5]. We are going to test the filtering for the same

CHAPTER 4. RESULTS 57

SNR values as before and follow the same steps: compare the validation of the

delineation values after filtering each input signal with those obtained with the

clean signal.

Result of muscle artifact addition to the signal sel302 using nst for each

SNR value.

The results of the delineation for each SNR value are shown in the following

table. For the delineation of the Pon point, only 24dB for SNR results in an

acceptable standard deviation since the value for 18dB exceeds the tolerance

bound. The delineation of the Ppeak behaves almost the same for SNR from

24dB to 12dB, but increasing a 50% the mean of the errors. The Pend point

is well delineated after filtering noise until a value of 18dB for SNR. The

delineation of QRSon is not accurate as for the baseline wander correction

since it doubles the standard deviation in the first 24dB result. For the end

of the QRS complex, its delineation is difficult after filtering the noise since

it always exceeds the tolerance level and the mean of the error is increased

considerably. Finally, several delineation problems happen with the T wave

since for SNR = 12dB no delineation is possible (there are no true positives TP).

Furthermore, the delineation of the T wave was good for the baseline wander

removal but, after noise suppression, the mean of the error is considerably high

and the standard deviation exceeds its bound for SNR = 6dB.

The poor performance for this noise suppression filtering in removing elec-

tromyographic noise for low SNR values could be explained by the fact that,

CHAPTER 4. RESULTS 58

although morphological filtering was designed and tested by a Gaussian noise

injection, which is useful for electromyographic noise simulation [21], the abnor-

mal shape of the input signal when noise is injected leads to a poor delineation

performance. For those values of SNR in which the noise does not distorts the

input signal severely, the performance is acceptable.

Param Pon Ppeak Pend QRSon QRSend Tpeak Tend

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 96.67 96.67

clean P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

signal m ± s (ms) −0.7 ± 8.2 8.0 ± 8.8 −6.9 ± 8.9 0.3 ± 5.5 17.7 ± 34.6 14.6 ± 5.1 4.4 ± 8.6

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 86.67 86.67

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

24dB m ± s (ms) −2.1 ± 8.1 12.7 ± 8.9 9.3 ± 6.9 1.3 ± 10.6 33.6 ± 50.6 18.6 ± 5.5 12.2 ± 7.6

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 80.00 80.00

SNR P+

min
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

18dB m ± s (ms) −2.3 ± 11.4 12.8 ± 9.7 9.5 ± 8.1 −1.9 ± 11.6 48.9 ± 70.5 23.5 ± 23.4 13.5 ± 17.7

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 0.00 0.00

SNR P+

min
(%) 55.56 55.56 55.56 38.46 38.96 NaN NaN

12dB m ± s (ms) 1.2 ± 14.1 12.4 ± 12.0 5.6 ± 15.0 −5.3 ± 10.6 59.3 ± 81.4 NaN ± 0.0 NaN ± 0.0

sel302 Se (%) 96.67 96.67 96.67 100.00 100.00 6.67 6.67

SNR P+

min
(%) 50.88 50.88 50.88 41.67 41.10 100.00 100.00

6dB m ± s (ms) 4.0 ± 54.5 20.0 ± 55.2 11.2 ± 52.7 −10.8 ± 24.9 56.7 ± 67.6 −14.0 ± 38.0 −30.0 ± 42.0

sel302 Se (%) 100.00 100.00 100.00 100.00 100.00 6.67 6.67

SNR P+

min
(%) 56.60 56.60 56.60 40.00 39.47 100.00 100.00

0dB m ± s (ms) −1.3 ± 75.5 2.9 ± 76.1 −4.9 ± 74.2 −5.3 ± 42.9 38.1 ± 65.4 −50.0 ± 2.0 −60.0 ± 8.0

sel302 Se (%) 96.67 96.67 96.67 96.67 100.00 6.67 6.67

SNR P+

min
(%) 43.94 43.94 43.94 29.90 30.30 100.00 100.00

-6dB m ± s (ms) −15.9 ± 94.6 0.0 ± 97.8 9.2 ± 99.4 −15.6 ± 47.5 29.1 ± 70.8 −18.0 ± 42.0 −34.0 ± 30.0

Tolerances for s 10.2 - 12.7 6.5 11.6 - 30.6

Table 4.4: Validation of the delineation of the signal sel302 with different muscle

artifact SNR using morphological filtering.

To test the filters in the Shimmer platform, we have used the open-source

GCC toolchain for MSP430 [20], based on GCC 3.2.3, which is the family

processor of the MSP430F1611 in the Shimmer node. The compilation for

the node needs several changes in the source code. At first, all the input

and output to and from the node have to be performed through the serial

USB port. In the PC in which the node is attached, a program to send and

receive data through the serial port is needed. This program will open the

input file, read its contents and then send the input samples to the node. For

delineation purposes, only those samples in the input signal which belong to

an annotated interval are sent as input. The communication process between

this program and the node is based on an acknowledgement process in which

special characters are used to flag different periods of the transmission. In the

node, the program in execution has to support the communication by using

the same protocol.

CHAPTER 4. RESULTS 59

Since the Shimmer node only has 10kB of RAM and 48kB of Flash memory,

it is not enough to host all the input data. Therefore, the source code of the

implementations of the filters had to be adapted to work with a small set of

input samples. To support this, it was needed to use an input and an output

buffer. The first step is to read through the UART the first samples to fill

the input buffer. This buffer is 512 elements long so it is possible with the

first load to fill the first circular buffers for the morphological filtering. In the

cubic spline technique, the first input dataset also provides enough samples to

initialize properly the knot locator.

Then, once all the samples in the input buffer have been processed, it is

needed to ask the program in the PC for more input samples through the

serial communication. When the received input dataset is not enough to full

the input buffer the implementation ends its execution because of reaching the

end of the input data. Our implementation uses the clock of the node to get

the elapsed execution time without the transmission time, since it is possible

to stop and resume timing.

Since there is no floating point hardware in the MSP430, all arithmetic op-

erations performed in the node have to use integers only. The mspgcc toolchain

translates floating point operations in slow integer-emulation compatible oper-

ations. The morphological filtering implementation only uses comparisons and

addition operations to calculate except for the last average operation. Since it

is a division by two, the compiler translates it as a right shift operation.

The operations needed in the cubic spline implementation are more com-

plex. The mspgcc toolchain uses the hardware multiplier to execute multi-

plications by factors other than power of 2 -which can be replaced by shift-

ing operations- and, since there is no hardware divisor, the compiler provides

translation for division operations by software emulation. The cubic spline

implementation uses exponentiation and division operations, which will result

in slow compatible operations. Furthermore, exponentiation operations have

to be performed using 32-bits instead of the 16-bits native operations to avoid

overflow. Taking these facts into account, the cubic spline implementation is

supposed to be slowest in execution because of the use of operations which

are not directly supported by the MSP430 and because of the use of dynamic

memory and the allocation cost associated.

In the following table, execution times in the Shimmer platform are shown

for different input signals. For each signal, only those samples in the annotated

interval are sent to the node. For the cubic spline technique, two different im-

plementations are tested. To avoid the extra memory cost associated to the

CHAPTER 4. RESULTS 60

use of a process queue to try to emulate realtime processing, the implementa-

tion without that queue provides output once a beat is ready for processing.

This makes unnecessary to use a second queue and it is good to test whether

there is an extra memory cost associated.

Samples Morph.filt. Morph.filt. Cubic spline

Input signal Real time bw&ns bw only w/o queue Cubic spline

sel100 8424 1302ms 813ms 2576ms 2574ms

33,7sec 3,86% 2,41% 7,64% 7,64%

sel302 7467 1215ms 760ms 2323ms 2317ms

29,8sec 4,07% 2,54% 7,78% 7,76%

sel123 11676 1854ms 1137ms 3675ms 3656ms

46,7sec 3,97% 2,43% 7,87% 7,83%

sel16272 10372 1730ms 1112ms 3263ms 3268ms

41,49sec 4,17% 2,68% 7,86% 7,88%

sel103 8911 1430ms 892ms 2768ms 2764ms

35,64sec 4,01% 2,5% 7,77% 7,75%

Average 1506,2ms 942,8ms 2921ms 2915,8ms

4,02% 2,51% 7,78% 7,77%

Table 4.5: Execution times for each input signal and implementation in the

Shimmer platform.

These results show that the morphological filtering implementation is twice

faster than the cubic spline technique for baseline wander removal and noise

suppression. For baseline wander removal only, the morphological filtering

implementation here presented is three times faster than the cubic spline tech-

nique. Percentages show the relationship between real time represented by

the input samples and the execution time obtained. The worst relative time,

7,88%, is admissible for realtime operation and the morphological filtering re-

sults are good enough to support several posterior operations in the node with

the filtered ECG signal.

The difference between both implementations of the morphological filtering

is remarkable. Without noise suppression, the implementation is truly fast and,

according to the results provided by the delineation phase, it offers a great

performance. Since the result of the noise suppression part is not as good as

expected, it would be better to use only the baseline wander removal part and

then another filter which may offer better performance for noise suppression.

In a PC platform, the cubic spline technique is almost a 30% faster than

the morphological filtering but in the Shimmer platform it is actually slower.

CHAPTER 4. RESULTS 61

This could be explained because of the use of 32-bit operations and some

multiplications and divisions needed, which lead to a poorer performance in

an embedded platform with limited hardware resources.

Implementation Executable size Static RAM usage

Morph. filt. bw only 4780 bytes 3932 bytes

Morph. filt. bw&ns 6840 bytes 4030 bytes

Cubic spline 5946 bytes 3205 bytes

Cubic spline w/o q. 5116 bytes 3199 bytes

Table 4.6: Comparison of the executable size and static RAM usage.

The executable size results show that there is no great difference between

the implementations. The static RAM usage is almost equal but it is necessary

to keep in mind that both cubic spline implementations use dynamic memory.

Chapter 5

Conclusions and future work

As a conclusion, baseline wander removal is a filtering need which can be

implemented efficiently in an embedded platform. In this project, we have

developed several implementations for baseline wander removal and the results

of posterior delineation show that it helps to process the ECG signal in noisy

contexts in an embedded platform.

The morphological filtering technique offers a great performance even when

using the noise suppression part. For baseline wander removal only, the ex-

ecution time is remarkable. The results of the validation of the delineation

are acceptable for SNR values greater than 0 dB. The RAM memory usage is

fixed and leaves room for extra code to posterior signal processing. However,

the noise suppression performance is not so good as expected since electromyo-

graphic noise is difficult to filter. For high SNR values, noise suppression offers

acceptable results. The optimizations carried out in this development lead to

a fast implementation which allows realtime operation while preserving power

consumption.

Regarding the cubic spline implementation, its results, although acceptable,

are worse than the morphological filtering implementation. The results of the

validation of the delineation after filtering using this technique are poorer than

those obtained with the other technique, and execution time is greater because

of the complexity of the calculations in an embedded platform. Furthermore,

the use of dynamic memory is associated to an extra operation cost and it

would lead to a memory usage constraint for another posterior processing

implementation which may be executed in the embedded platform at the same

time.

The execution in the Shimmer platform show that both techniques are

acceptable for realtime operation. However, the faster the execution is, the

62

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 63

lower power consumption, so fast execution is desirable. For this purpose, the

morphological filtering implementation without noise suppression offers a great

result whereas cubic spline implementations are not equal in efficiency.

The results obtained in a PC platform have been equal to those obtained by

the execution in the Shimmer platform so there is not any kind of difference

in the output regarding the architecture used for execution. The code has

been designed to be portable and the mspgcc compiler offers good equivalent

translation for those operations that are not directly supported by the MSP430

microcontroller.

For future work, it would be needed to use another source of ECG signal

instead of the Physionet QT database. We have validated the implementations

by using a program to send the node the input samples whereas this project

stands for realtime ECG processing in a wearable platform. It has been proved

that implementations here presented are acceptable to run in an embedded

platform, so the next step may have been to perform a real ECG ambulatory

processing by the use of a node.

Regarding the implementation of a Wireless Body Sensor Network, these

implementations would be only the first step in a more complex system but,

at the same time, a filtering stage is needed at first for posterior processing.

Because of the optimizations made, the morphological filtering implementation

offers a good performance to support posterior operations.

According to the results of noise suppression, it is needed a best perfor-

mance. As exposed in the first chapter, noise suppression is a major challenge

in ECG processing and there is not a suitable method yet. The implementation

of morphological filtering offers good performance when SNR value is high but

it increases the execution time. Another approach to noise suppression may

result in a better performance so only the baseline wander removal made by

this technique would be enough.

Chapter 6

International publications

derived from this work

The morphological filtering implementation here presented has been used for

multi-lead wavelet delineation on an embedded platform. As done in this re-

port, input signal was filtered before performing a wavelet delineation. Multi-

lead wavelet delineation stands for increasing delineation accuracy by the use

of two leads at the same time. Baseline wander removal filtering is needed

to process input signal before delineation and the morphological filtering has

been chosen because of its performance. Results of this development have been

published in Computers in Cardiology :

Multi-Lead Wavelet-Based ECG Delineation on a Wearable Embedded Sen-

sor Platform, Francisco Rincón, Nicolas Boichat, Vı́ctor Barbero, Nadia Khaled,

David Atienza, Proc. of Computers in Cardiology (CinC’09), IEEE Press, pp.

1 - 4, Park City, Utah, USA, September 13-16, 2009.

64

Chapter 7

References

1. L. Sörnmo and P. Laguna. Bioelectrical Signal Processing in Cardiac and

Neurological Applications. Elsevier Academic Press, 2005.

2. P. Laguna, R.G. Mark, A. Goldberg, and G.B. Moody. A database for

evaluation of algorithms for measurement of QT and other waveform

intervals in the ECG. Computers in Cardiology 1997, pages 673-676, Sep

1997. http://www.physionet.org/physiobank/database/qtdb/doc/.

3. Y. Sun, K.L. Chan, and S.M. Krishnan. ECG signal conditioning by

morphological filtering. Computers in biology and medicine, 32(6):465-

479, 2002.

4. C. R. Meyer and H. N. Keiser. Electrocardiogram baseline estimation

and removal using cubic splines and space-state computation techniques.

Computers and biological research 10, 1977, pages 459-470.

5. PhysioNet. The MIT-BIH Noise Stress Test Database.

http://www.physionet.org/physiobank/database/nstdb/.

6. N. Nethercote and J. Seward. Valgrind: A Framework for heavyweight

dynamic binary instrumentation. Proceedings of ACM SIGPLAN 2007

Conference on Programming Language Design and Implementation (PLDI

2007), San Diego, California, USA, June 2007.

7. G. B. Moody and R. G. Mark, Development and evaluation of a 2-lead

ECG analysis program in Computers in Cardiology. IEEE Computer

Society Press, 1982, pp. 39-44.

8. G. B. Moody, W. E. Muldrow, R. G. Mark. A noise stress test for

arrhythmia detectors. Computers in Cardiology 1984; 11:381-384.

65

CHAPTER 7. REFERENCES 66

9. PhysioToolkit, open source software for biomedical science and engineer-

ing. http://www.physionet.org/physiotools/.

10. N. Boichat, N. Khaled, F. Rincon, and D. Atienza. Wavelet-Based ECG

Delineation on a Wearable Embedded Sensor Platform.

11. C.S.E.W. Party. Recommendations for measurement standards in quan-

titative electrocardiography. Eur. Heart J, 6:815-825, 1985.

12. P. W. Macfarlane, J. Peden, G. Lennox, M. P. Watts and T. D. V.

Lawrie, The Glasgow system in Trends in Computer-Processed Electro-

cardiograms (J. H. van Bemmel and J. L. Willems, eds.), pp. 143-150,

Amsterdam, North-Holland, 1977.

13. F. Badilini, A. J. Moss and E. L. Titlebaum, Cubic spline baseline estima-

tion in ambulatory ECG recordings for the measurement of ST segment

displacements in Proc. Conf. IEEE Eng. Med. Biol. Soc. (EMBS),

pp.584-585, IEEE, 1991.

14. T. N. E. Greville, Theory and applications of spline functions. Academic

Press. New York, 1969.

15. R. Robergs and R. Landwehr. The Surprising History of the HRmax=220-

age Equation. Journal of Exercise Physiology 5 (2): 1-10. ISSN 1097-

9751, 2002.

16. O. Inbar, A. Oten, M. Scheinowitz, A. Rotstein, R. Dlin, and R. Casaburi.

Normal cardiopulmonary responses during incremental exercise in 20-70

year old men. Med Sci Sport Exerc 1994;26(5):538-546.

17. C.-H. Henry Chu, E.J. Delp, Impulsive noise suppression and background

normalization of electromagnetism signals using morphological operators,

IEEE Trans. Biomed. Eng.36 (2) (1989) 262-272.

18. Cuiwei Li, Chongxun Zheng, and Changfeng Tai. Detection of ECG

characteristic points using wavelet transforms. Biomedical Engineering,

IEEE Transactions on, 42(1):21-28, Jan. 1995.

19. J.P. Martinez, R. Almeida, S. Olmos, A.P. Rocha, and P. Laguna. A

wavelet-based ECG delineator: evaluation on standard databases. Biomed-

ical Engineering, IEEE Transactions on, 51(4):570-581, April 2004.

20. The GCC toolchain for the Texas Instruments MSP430 MCUs.

http://mspgcc.sourceforge.net/.

CHAPTER 7. REFERENCES 67

21. R. O. Morales, M. A. Pérez Sánchez, J. V. L. Ginoria, R. Grau and R.

R. Ramı́rez. Evaluation of QRS morphological classifiers in the presence

of noise. Computers and Biomedical Research, 30, 200-210, 1997.

22. D. Atienza. Wireless Sensor Networks. Universidad Complutense de

Madrid, 2009.

23. Shimmer Sensor Platform.

http://www.shimmer-research.com/.

24. J. A. van Alsté, W. van Eck and O. E. Herrman, ECG baseline wander

reduction using linear phase filters. Comput. Biomed. Res., vol. 19,

417-427, 1986.

25. L. Sörnmo, Time-variable digital filtering of ECG baseline wander. Med.

Biol. Eng & Comput., vol. 31, 503-508, 1993.

26. R. Jané, P. Laguna, N. V. Thakor and P. Caminal. Adaptive baseline

wander removal in the ECG: comparative analysis with cubic spline tech-

nique, in Proc. Computers in Cardiology, 143-146, IEEE Computer So-

ciety Press, 1992.

27. J. L. Talmon, J. A. Kors and J. H. van Bemmel. Adaptive Gaussian

filtering in routing ECG/VCG analysis. IEEE Trans. Acoust. Speech

Sig. Proc., vol. 34, 527-534, 1986.

28. V. de Pinto. Filters for the reduction of baseline wander and muscle

artifact in the ECG. J. Electrocardiol., vol. 25 (suppl.), 40-48, 1991.

29. CodeBlue: Wireless sensors for medical care. Harvard Sensor Networks

Lab. University of Hardvard. http://fiji.eecs.harvard.edu/CodeBlue.

