Universidad Complutense de Madrid
E-Prints Complutense

A non-feature based method for automatic image registration relying on depth-dependent planar projective transformations
Método para el registro automático de imágenes basado en transformaciones proyectivas planas dependientes de las distancias y orientado a imágenes sin características comunes

Impacto

Downloads

Downloads per month over past year



Salinas Maldonado, Carlota (2016) A non-feature based method for automatic image registration relying on depth-dependent planar projective transformations. [Thesis]

[img]
Preview
PDF
14MB


Abstract

Multisensory data fusion oriented to image-based application improves the accuracy, quality and availability of the data, and consequently, the performance of robotic systems, by means of combining the information of a scene acquired from multiple and different sources into a unified representation of the 3D world scene, which is more enlightening and enriching for the subsequent image processing, improving either the reliability by using the redundant information, or the capability by taking advantage of complementary information. Image registration is one of the most relevant steps in image fusion techniques. This procedure aims the geometrical alignment of two or more images. Normally, this process relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. For instance, in the combination of ToF and RGB cameras, the robust feature-matching is not reliable. Typically, the fusion of these two sensors has been addressed from the computation of the cameras calibration parameters for coordinate transformation between them. As a result, a low resolution colour depth map is provided. For improving the resolution of these maps and reducing the loss of colour information, extrapolation techniques are adopted. A crucial issue for computing high quality and accurate dense maps is the presence of noise in the depth measurement from the ToF camera, which is normally reduced by means of sensor calibration and filtering techniques. However, the filtering methods, implemented for the data extrapolation and denoising, usually over-smooth the data, reducing consequently the accuracy of the registration procedure...

Resumen (otros idiomas)

La fusión multisensorial orientada a aplicaciones de procesamiento de imágenes, conocida como fusión de imágenes, es una técnica que permite mejorar la exactitud, la calidad y la disponibilidad de datos de un entorno tridimensional, que a su vez permite mejorar el rendimiento y la operatividad de sistemas robóticos. Dicha fusión, se consigue mediante la combinación de la información adquirida por múltiples y diversas fuentes de captura de datos, la cual se agrupa del tal forma que se obtiene una mejor representación del entorno 3D, que es mucho más ilustrativa y enriquecedora para la implementación de métodos de procesamiento de imágenes. Con ello se consigue una mejora en la fiabilidad y capacidad del sistema, empleando la información redundante que ha sido adquirida por múltiples sensores. El registro de imágenes es uno de los procedimientos más importantes que componen la fusión de imágenes. El objetivo principal del registro de imágenes es la consecución de la alineación geométrica entre dos o más imágenes. Normalmente, este proceso depende de técnicas de búsqueda de patrones comunes entre imágenes, lo cual puede ser un inconveniente cuando se combinan sensores que no proporcionan datos con características similares. Un ejemplo de ello, es la fusión de cámaras de color de alta resolución (RGB) con cámaras de Tiempo de Vuelo de baja resolución (Time-of-Flight (ToF)), con las cuales no es posible conseguir una detección robusta de patrones comunes entre las imágenes capturadas por ambos sensores. Por lo general, la fusión entre estas cámaras se realiza mediante el cálculo de los parámetros de calibración de las mismas, que permiten realizar la trasformación homogénea entre ellas. Y como resultado de este xii Abstract procedimiento, se obtienen mapas de profundad y de color de baja resolución. Con el objetivo de mejorar la resolución de estos mapas y de evitar la pérdida de información de color, se utilizan diversas técnicas de extrapolación de datos. Un factor crucial a tomar en cuenta para la obtención de mapas de alta calidad y alta exactitud, es la presencia de ruido en las medidas de profundidad obtenidas por las cámaras ToF. Este problema, normalmente se reduce mediante la calibración de estos sensores y con técnicas de filtrado de datos. Sin embargo, las técnicas de filtrado utilizadas, tanto para la interpolación de datos, como para la reducción del ruido, suelen producir el sobre-alisamiento de los datos originales, lo cual reduce la exactitud del registro de imágenes...

Item Type:Thesis
Additional Information:

Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 18-12-2015

Directors:
DirectorsDirector email
Armada Rodríguez, Manuel Ángel
Fernández Saavedra, Roemi Emilia
Montes Franceschi, Héctor
Uncontrolled Keywords:Hardware
Palabras clave (otros idiomas):Computer input-output equipment
Subjects:Sciences > Computer science > Hardware
ID Code:35785
Deposited On:18 Feb 2016 09:49
Last Modified:06 May 2019 10:46

Origin of downloads

Repository Staff Only: item control page