Publication:
Discrete Mechanics for Forced and Constrained Systems

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2020-03-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Geometric mechanics is a branch of mathematics that studies classical mechanics of particles and fields from the point of view of geometry and its relation to symmetry. One of its most interesting developments was bringing together numerical analysis and geometry by relating what is known as discrete mechanics with numerical integration. This is called geometric integration. In the last 30 years this latter field has exploded with researchfrom the purely theoretical to the strictly applied. Variational integrators are a type of geometric integrators arising naturally from the discretization process of variational principles in mechanics. They display some of the most salient features of the theory, such as symplecticity, preservation of momenta and quasi-preservation of energy. These methods also apply very naturally to optimal control problems, also based on variational principles. Unfortunately, not all mechanical systems of interest admit a variational formulation. Such is the case of forced and nonholonomic mechanical systems. In this thesis we study both of these types of systems and obtain several new results. By geometrizing a new technique of duplication of variables and applying it, we were able to definitely prove the order of integrators for forced systems by using only variational techniques. Furthermore, we could also extend these results to the reduced setting in Lie groups, leading us to a very interesting geometric structure, Poisson groupoids. In addition, we developed new methods to geometrically integrate nonholonomic systems to arbitrary order preserving their constraints exactly. These methods can be seen as nonholonomic extensions of variational methods, and we were able to prove their order, although not through variational means. These methods have a nice geometric interpretation and thanks to their closeness to variational methods, they can be easily generalized to other geometric settings, such as Lie group integration. Finally, we were able to apply these new methods to optimal control problems...
La mecánica clásica es un campo tan fundamental para la física como la geometría lo es para las matemáticas. Ambos están interrelacionados y su estudio conjunto así como sus interacciones forman lo que hoy se conoce como la mecánica geométrica [véase, por ejemplo, AM78; Arn89; Hol11a; Hol11 b]. Hoy es bien sabido que el concepto de simetría tiene importantes consecuencias para los sistemas mecánicos. En particular, la evolución de los sistemas mecánicos suele mostrar ciertas propiedades de preservación en forma de cantidades conservadas del movimiento o preservación de estructuras geométricas. Ser capaces de capturar estas propiedades es vital para tener una imagen fiel, tanto en términos cuantitativos como cualitativos, de cara al estudio de estos sistemas. Esto tiene gran importancia en el campo teórico y también el aplicado, como en la ingeniería. La experimentación en laboratorios y la generación de prototipos son procesos costosos y que requieren de tiempo, y para determinad os sistemas pueden no ser siquiera factibles. Con la llegada el ordenador, simular y experimentar con sistemas mecánicos de forma rápida y económica se convirtió en una realidad . Desde sencillas simulaciones balísticas para alumnos de secundaria a simulaciones de dinámica molecular a gran escala; desde la planificación de trayectorias para vehículos autónomos a la estimación de movimientos en robots bípedos; desde costosas simulaciones basadas en modelos físicos para la industria de la animación a la simulación de sólidos rígidos y deformables en tiempo real para la industria del videojuego, el tratamiento numérico de sistemas de complejidad creciente se ha convertido en una necesidad. Naturalmente surgieron nuevos algoritmos capaces de conservar gran parte de las propiedades geométricas de estos sistemas, configurando lo que a hora se conoce como integración geométrica [véase SC94; HLW1O]. En los últimos 20 a 30 años se han dado grandes pasos en esta dirección, con el desarrollo de métodos que conservan energía, métodos simplécticos y multisimplécticos, métodos que preservan el espacio de configuración y más. Aún así, la investigación en esta área está todavía lejos de acabar. Por ejemplo , los sistemas sometidos a fuerzas externas y con ligaduras ofrecen ciertas dificultades que han de ser abordadas, y esta tesis se dedica a explorar estos dos casos ofreciendo nuevos desarrollos y resultados...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 10/07/2019
Keywords
Citation
Collections